Giải các phương trình sau : a ) ( 9x^2 – 4 ) ( x+1 ) = ( 3x + 2 ) ( x^2 -1 ) b ) ( x-1 )^2 -1 +x^2=(1-x) (x+3) 14/10/2021 Bởi aihong Giải các phương trình sau : a ) ( 9x^2 – 4 ) ( x+1 ) = ( 3x + 2 ) ( x^2 -1 ) b ) ( x-1 )^2 -1 +x^2=(1-x) (x+3)
$a.$ $(9x^{2} – 4)( x + 1) = (3x + 2)(x^{2} – 1)$ $⇔ (3x – 2)(3x + 2)(x + 1) = (3x + 2)(x – 1)(x + 1)$ $⇔ (3x + 1)(x + 1)(2x – 1) = 0$ $⇔$ \(\left[ \begin{array}{l} 3x \ + \ 2 \ = \ 0 \\ x \ + \ 1 \ = \ 0 \\ 2x \ – 1 \ = \ 0 \end{array} \right.\) $⇔$ \(\left[ \begin{array}{l}x \ = \ \frac {-2}{3} \\ x \ = \ -1 \\ x \ = \ \frac {1}{2} \end{array} \right.\) $b.$ $(x -1 )^{2} – 1 + x^{2} = (1 – x)(x + 3)$ $⇔ (x – 1)(x – 1) + (x – 1)(x + 1) + (x – 1)(x + 3) = 0$ $⇔ (x – 1)(x – 1 + x + 1 + x + 3) = 0$ $⇔ (x – 1)(3x + 3) = 0$ $⇔$ \(\left[ \begin{array}{l} x \ – \ 1 \ = \ 0 \\ 3x \ + \ 3 \ = \ 0 \end{array} \right.\) $⇔$ \(\left[ \begin{array}{l} x \ = \ 1 \\ x \ = \ -1 \end{array} \right.\) XIN HAY NHẤT CHÚC EM HỌC TỐT Bình luận
a ) ( 9x^2 – 4 ) ( x+1 ) = ( 3x + 2 ) ( x^2 -1 ) (3x-2)(3x+2)(x+1)-(3x+2)(x-1)(x+1)=0 (3x+2)(x+1)(3x-2-x+1)=0 (3x+2)(x+1)(2x-1)=0 =>3x+2=0 hoặc x+1=0 hoặc 2x-1=0 3x+2=0 =>x=-2/3 x+1=0 => x=-1 2x-1=0 => x=1/2 vậy S={-2/3 , -1 , 1/2} b ) ( x-1 )^2 -1 +x^2=(1-x) (x+3) x^2-2x+1-1+x^2-(1-x)(x+3)=0 2x^2-2x-x-3+x^2+3x=0 3x^2 =0 =>x= 0 vậy S={0) Bình luận
$a.$ $(9x^{2} – 4)( x + 1) = (3x + 2)(x^{2} – 1)$
$⇔ (3x – 2)(3x + 2)(x + 1) = (3x + 2)(x – 1)(x + 1)$
$⇔ (3x + 1)(x + 1)(2x – 1) = 0$
$⇔$ \(\left[ \begin{array}{l} 3x \ + \ 2 \ = \ 0 \\ x \ + \ 1 \ = \ 0 \\ 2x \ – 1 \ = \ 0 \end{array} \right.\) $⇔$ \(\left[ \begin{array}{l}x \ = \ \frac {-2}{3} \\ x \ = \ -1 \\ x \ = \ \frac {1}{2} \end{array} \right.\)
$b.$ $(x -1 )^{2} – 1 + x^{2} = (1 – x)(x + 3)$
$⇔ (x – 1)(x – 1) + (x – 1)(x + 1) + (x – 1)(x + 3) = 0$
$⇔ (x – 1)(x – 1 + x + 1 + x + 3) = 0$
$⇔ (x – 1)(3x + 3) = 0$
$⇔$ \(\left[ \begin{array}{l} x \ – \ 1 \ = \ 0 \\ 3x \ + \ 3 \ = \ 0 \end{array} \right.\) $⇔$ \(\left[ \begin{array}{l} x \ = \ 1 \\ x \ = \ -1 \end{array} \right.\)
XIN HAY NHẤT
CHÚC EM HỌC TỐT
a ) ( 9x^2 – 4 ) ( x+1 ) = ( 3x + 2 ) ( x^2 -1 )
(3x-2)(3x+2)(x+1)-(3x+2)(x-1)(x+1)=0
(3x+2)(x+1)(3x-2-x+1)=0
(3x+2)(x+1)(2x-1)=0
=>3x+2=0 hoặc x+1=0 hoặc 2x-1=0
3x+2=0 =>x=-2/3
x+1=0 => x=-1
2x-1=0 => x=1/2
vậy S={-2/3 , -1 , 1/2}
b ) ( x-1 )^2 -1 +x^2=(1-x) (x+3)
x^2-2x+1-1+x^2-(1-x)(x+3)=0
2x^2-2x-x-3+x^2+3x=0
3x^2 =0
=>x= 0
vậy S={0)