Giải các.PT sau: a). (x^2-3x)^2-2x(x-3)=8 b) x-2√ của x-1=16 12/11/2021 Bởi Julia Giải các.PT sau: a). (x^2-3x)^2-2x(x-3)=8 b) x-2√ của x-1=16
Đáp án: b. x=26 Giải thích các bước giải: \(\begin{array}{l}a.{\left[ {x\left( {x – 3} \right)} \right]^2} – 2x\left( {x – 3} \right) – 8 = 0\\Dat:x\left( {x – 3} \right) = t\\Pt \to {t^2} – 2t – 8 = 0\\ \to {t^2} + 2t – 4t – 8 = 0\\ \to t\left( {t + 2} \right) – 4\left( {t + 2} \right) = 0\\ \to \left[ \begin{array}{l}t + 2 = 0\\t – 4 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}t = – 2\\t = 4\end{array} \right.\\ \to \left[ \begin{array}{l}{x^2} – 3x = – 2\\{x^2} – 3x = 4\end{array} \right.\\ \to \left[ \begin{array}{l}\left( {x – 2} \right)\left( {x – 1} \right) = 0\\\left( {x – 4} \right)\left( {x + 1} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 2\\x = 1\\x = 4\\x = – 1\end{array} \right.\\b.DK:x \ge 1\\x – 2\sqrt {x – 1} = 16\\ \to x – 16 = 2\sqrt {x – 1} \\ \to \left\{ \begin{array}{l}x \ge 16\\{x^2} – 32x + 256 = 4x – 4\end{array} \right.\\ \to \left\{ \begin{array}{l}x \ge 16\\{x^2} – 26x – 10x + 256 = 0\end{array} \right.\\ \to \left\{ \begin{array}{l}x \ge 16\\\left[ \begin{array}{l}x – 26 = 0\\x – 10 = 0\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}x = 10\left( l \right)\\x = 26\left( {TM} \right)\end{array} \right.\end{array}\) Bình luận
Đáp án:
b. x=26
Giải thích các bước giải:
\(\begin{array}{l}
a.{\left[ {x\left( {x – 3} \right)} \right]^2} – 2x\left( {x – 3} \right) – 8 = 0\\
Dat:x\left( {x – 3} \right) = t\\
Pt \to {t^2} – 2t – 8 = 0\\
\to {t^2} + 2t – 4t – 8 = 0\\
\to t\left( {t + 2} \right) – 4\left( {t + 2} \right) = 0\\
\to \left[ \begin{array}{l}
t + 2 = 0\\
t – 4 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
t = – 2\\
t = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
{x^2} – 3x = – 2\\
{x^2} – 3x = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left( {x – 2} \right)\left( {x – 1} \right) = 0\\
\left( {x – 4} \right)\left( {x + 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2\\
x = 1\\
x = 4\\
x = – 1
\end{array} \right.\\
b.DK:x \ge 1\\
x – 2\sqrt {x – 1} = 16\\
\to x – 16 = 2\sqrt {x – 1} \\
\to \left\{ \begin{array}{l}
x \ge 16\\
{x^2} – 32x + 256 = 4x – 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \ge 16\\
{x^2} – 26x – 10x + 256 = 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \ge 16\\
\left[ \begin{array}{l}
x – 26 = 0\\
x – 10 = 0
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 10\left( l \right)\\
x = 26\left( {TM} \right)
\end{array} \right.
\end{array}\)