giải các pt sau: a, (4x-3)(3x+1)=(x-4)(1-12x) b, x^2-6x+9=36 c,(x^2+1)(x-3)=x^2-9 d,2x^3-5x^2+3x=0 04/10/2021 Bởi Eliza giải các pt sau: a, (4x-3)(3x+1)=(x-4)(1-12x) b, x^2-6x+9=36 c,(x^2+1)(x-3)=x^2-9 d,2x^3-5x^2+3x=0
Đáp án: d) \(\left[ \begin{array}{l}x = 0\\x = \dfrac{3}{2}\\x = 1\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)\left( {4x – 3} \right)\left( {3x + 1} \right) = \left( {x – 4} \right)\left( {1 – 12x} \right)\\ \to 12{x^2} – 5x – 3 = – 12{x^2} + 49x – 4\\ \to 24{x^2} – 54x + 1 = 0\\ \to \left[ \begin{array}{l}x = \dfrac{{ – 27 + \sqrt {753} }}{{24}}\\x = \dfrac{{ – 27 – \sqrt {753} }}{{24}}\end{array} \right.\\b){x^2} – 6x + 9 = 36\\ \to {\left( {x – 3} \right)^2} = 36\\ \to \left| {x – 3} \right| = 6\\ \to \left[ \begin{array}{l}x – 3 = 6\\x – 3 = – 6\end{array} \right.\\ \to \left[ \begin{array}{l}x = 9\\x = – 3\end{array} \right.\\c)({x^2} + 1)(x – 3) = {x^2} – 9\\ \to ({x^2} + 1)(x – 3) = \left( {x – 3} \right)\left( {x + 3} \right)\\ \to ({x^2} + 1)(x – 3) – \left( {x – 3} \right)\left( {x + 3} \right) = 0\\ \to \left( {x – 3} \right)\left( {{x^2} + 1 – x – 3} \right) = 0\\ \to \left[ \begin{array}{l}x – 3 = 0\\{x^2} – x – 2 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 3\\\left( {x – 2} \right)\left( {x + 1} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 3\\x = 2\\x = – 1\end{array} \right.\\d)2{x^3} – 5{x^2} + 3x = 0\\ \to x\left( {2{x^2} – 5x + 3} \right) = 0\\ \to \left[ \begin{array}{l}x = 0\\\left( {2x – 3} \right)\left( {x – 1} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\x = \dfrac{3}{2}\\x = 1\end{array} \right.\end{array}\) ( b xem lại đề câu a nhé ) Bình luận
Đáp án:
d) \(\left[ \begin{array}{l}
x = 0\\
x = \dfrac{3}{2}\\
x = 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left( {4x – 3} \right)\left( {3x + 1} \right) = \left( {x – 4} \right)\left( {1 – 12x} \right)\\
\to 12{x^2} – 5x – 3 = – 12{x^2} + 49x – 4\\
\to 24{x^2} – 54x + 1 = 0\\
\to \left[ \begin{array}{l}
x = \dfrac{{ – 27 + \sqrt {753} }}{{24}}\\
x = \dfrac{{ – 27 – \sqrt {753} }}{{24}}
\end{array} \right.\\
b){x^2} – 6x + 9 = 36\\
\to {\left( {x – 3} \right)^2} = 36\\
\to \left| {x – 3} \right| = 6\\
\to \left[ \begin{array}{l}
x – 3 = 6\\
x – 3 = – 6
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 9\\
x = – 3
\end{array} \right.\\
c)({x^2} + 1)(x – 3) = {x^2} – 9\\
\to ({x^2} + 1)(x – 3) = \left( {x – 3} \right)\left( {x + 3} \right)\\
\to ({x^2} + 1)(x – 3) – \left( {x – 3} \right)\left( {x + 3} \right) = 0\\
\to \left( {x – 3} \right)\left( {{x^2} + 1 – x – 3} \right) = 0\\
\to \left[ \begin{array}{l}
x – 3 = 0\\
{x^2} – x – 2 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
\left( {x – 2} \right)\left( {x + 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
x = 2\\
x = – 1
\end{array} \right.\\
d)2{x^3} – 5{x^2} + 3x = 0\\
\to x\left( {2{x^2} – 5x + 3} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
\left( {2x – 3} \right)\left( {x – 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = \dfrac{3}{2}\\
x = 1
\end{array} \right.
\end{array}\)
( b xem lại đề câu a nhé )