giải giúp mình PT: 2x+1/x-1 = 5(x-1)/x+1 02/07/2021 Bởi Aubrey giải giúp mình PT: 2x+1/x-1 = 5(x-1)/x+1
Đáp án: `S={4;1/3}` Giải thích các bước giải: ĐKXĐ:`x`$\neq$`+-1` `(2x+1)/(x-1)=(5(x-1))/(x+1)` `⇔((2x+1)(x+1))/(x^2-1)=(5(x-1)^2)/(x^2-1)` `⇒2x^2+2x+x+1=5(x^2-2x+1)` `⇔2x^2+3x+1=5x^2-10x+5` `⇔2x^2+3x-5x^2+10x=5-1` `⇔-3x^2+13x=4` `⇔-3x^2+13x-4=0` `⇔-3x^2+12x+x-4=0` `⇔-3x(x-4)+(x-4)=0` `⇔(x-4)(-3x+1)=0` `1)x-4=0⇔x=4(TM)` `2)-3x+1=0⇔x=1/3(TM)` Vậy `S={4;1/3}` Bình luận
Đáp án: Giải thích các bước giải: `\frac{2x+1}{x-1}=\frac{5(x-1)}{x+1}` ĐK: `x \ne ±1` `⇔ (2x+1)(x+1)=5(x-1)(x-1)` `⇔ 2x^2+2x+x+1=5(x^2-2x+1)` `⇔ 2x^2-5x^2+10x+3x-5+1=0` `⇔ -3x^2+13x-4=0` `⇔ -3x^2+x+12x-4=0` `⇔ x(-3x+1)-4(-3x+1)=0` `⇔ (x-4)(-3x+1)=0` `⇔` \(\left[ \begin{array}{l}x=4\\x=\dfrac{1}{3}\end{array} \right.\) (TM) Vậy `S={4;1/3}` Bình luận
Đáp án:
`S={4;1/3}`
Giải thích các bước giải:
ĐKXĐ:`x`$\neq$`+-1`
`(2x+1)/(x-1)=(5(x-1))/(x+1)`
`⇔((2x+1)(x+1))/(x^2-1)=(5(x-1)^2)/(x^2-1)`
`⇒2x^2+2x+x+1=5(x^2-2x+1)`
`⇔2x^2+3x+1=5x^2-10x+5`
`⇔2x^2+3x-5x^2+10x=5-1`
`⇔-3x^2+13x=4`
`⇔-3x^2+13x-4=0`
`⇔-3x^2+12x+x-4=0`
`⇔-3x(x-4)+(x-4)=0`
`⇔(x-4)(-3x+1)=0`
`1)x-4=0⇔x=4(TM)`
`2)-3x+1=0⇔x=1/3(TM)`
Vậy `S={4;1/3}`
Đáp án:
Giải thích các bước giải:
`\frac{2x+1}{x-1}=\frac{5(x-1)}{x+1}`
ĐK: `x \ne ±1`
`⇔ (2x+1)(x+1)=5(x-1)(x-1)`
`⇔ 2x^2+2x+x+1=5(x^2-2x+1)`
`⇔ 2x^2-5x^2+10x+3x-5+1=0`
`⇔ -3x^2+13x-4=0`
`⇔ -3x^2+x+12x-4=0`
`⇔ x(-3x+1)-4(-3x+1)=0`
`⇔ (x-4)(-3x+1)=0`
`⇔` \(\left[ \begin{array}{l}x=4\\x=\dfrac{1}{3}\end{array} \right.\) (TM)
Vậy `S={4;1/3}`