Giải giúp mình với ạ Cho a,b>0 thõa mãn a+b $\leq$ 1. Chứng minh rằng a+b+$\frac{1}{x^{2}}$+$\frac{1}{y^{2}}$ $\geq$ 9

Giải giúp mình với ạ
Cho a,b>0 thõa mãn a+b $\leq$ 1. Chứng minh rằng a+b+$\frac{1}{x^{2}}$+$\frac{1}{y^{2}}$ $\geq$ 9

0 bình luận về “Giải giúp mình với ạ Cho a,b>0 thõa mãn a+b $\leq$ 1. Chứng minh rằng a+b+$\frac{1}{x^{2}}$+$\frac{1}{y^{2}}$ $\geq$ 9”

  1. Đáp án:

     một cách không mấy hay

    ` Cô . si -> 1 >= a + b >= 2\sqrt{ab} -> 0 < \sqrt{ab} <= 1/2` . 

    Đặt `\sqrt{ab} = t (0 < t <= 1/2)`

    Áp dụng ` Cô . si ` lần nữa có

    `VT = a + b + 1/a^2 + 1/b^2 >= 2\sqrt{ab} + 2/(ab) = 2t + 2/t^2 = 2/t^2 + 16t + 16t – 30t (1)`

    Áp dụng ` Cô si ` có

    `2/t^2 + 16t + 16t – 30t ≥ 3` $\sqrt[3]{\dfrac{2}{t^2} . 16t . 16t}$ ` – 30 . 1/2 = 3.8 – 15 = 9 (2)`

    Từ `(1)(2) – > VT >= 9 = VP` điều phải chứng minh

    Dấu “=” `↔ a = b = 1/2`

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận