Giải hệ phương trình a) {2(x-2)+3(y+1)=-2 {3(x-2)-2(y+1)=-3 b){2x-3y=11 {-4+6y=5 15/08/2021 Bởi Abigail Giải hệ phương trình a) {2(x-2)+3(y+1)=-2 {3(x-2)-2(y+1)=-3 b){2x-3y=11 {-4+6y=5
Đáp án: Giải thích các bước giải: a/ 6(x-2)+9(y+1)=-6 (1) 6(x-2)-4(y+1)=-6 (2) lấy (1)-(2) 13(y+1)=0 <–> y=-1 ; thế vao 6(x-2)-4(-1+1)=-6 x=1 b/ 2x-3y=11 -4+6y=5—>6y=9 <—>y=9/6=3/2 2x-3*9/6=11 <—>x=(11+9/2)/2=31/4 Bình luận
Đáp án: a, \(\left\{ \begin{array}{l}x = 1\\y = – 1\end{array} \right.\) b, \(\left\{ \begin{array}{l}x = \frac{{31}}{4}\\y = \frac{3}{2}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a,\left\{ \begin{array}{l}2(x – 2) + 3(y + 1) = – 2\\3(x – 2) – 2(y + 1) = – 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}6(x – 2) + 9(y + 1) = – 6\\6(x – 2) – 4(y + 1) = – 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}6(x – 2) + 9(y + 1) = – 6\\13(y + 1) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}6(x – 2) + 9(y + 1) = – 6\\y = – 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = – 1\end{array} \right.\\b,\left\{ \begin{array}{l}2x – 3y = 11\\ – 4 + 6y = 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2x – 3y = 11\\y = \frac{3}{2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{31}}{4}\\y = \frac{3}{2}\end{array} \right.\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
a/ 6(x-2)+9(y+1)=-6 (1)
6(x-2)-4(y+1)=-6 (2)
lấy (1)-(2)
13(y+1)=0 <–> y=-1 ; thế vao 6(x-2)-4(-1+1)=-6
x=1
b/ 2x-3y=11
-4+6y=5—>6y=9 <—>y=9/6=3/2
2x-3*9/6=11 <—>x=(11+9/2)/2=31/4
Đáp án:
a, \(\left\{ \begin{array}{l}
x = 1\\
y = – 1
\end{array} \right.\)
b, \(\left\{ \begin{array}{l}
x = \frac{{31}}{4}\\
y = \frac{3}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a,\left\{ \begin{array}{l}
2(x – 2) + 3(y + 1) = – 2\\
3(x – 2) – 2(y + 1) = – 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
6(x – 2) + 9(y + 1) = – 6\\
6(x – 2) – 4(y + 1) = – 6
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
6(x – 2) + 9(y + 1) = – 6\\
13(y + 1) = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
6(x – 2) + 9(y + 1) = – 6\\
y = – 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 1\\
y = – 1
\end{array} \right.\\
b,\left\{ \begin{array}{l}
2x – 3y = 11\\
– 4 + 6y = 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2x – 3y = 11\\
y = \frac{3}{2}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{31}}{4}\\
y = \frac{3}{2}
\end{array} \right.
\end{array}\)