Giải hệ phương trình: \begin{cases}288x = 21(x^2-y^2)\\252xy-36y^2=36(x^2-y^2)\end{cases} 07/10/2021 Bởi Savannah Giải hệ phương trình: \begin{cases}288x = 21(x^2-y^2)\\252xy-36y^2=36(x^2-y^2)\end{cases}
Đáp án: x=14 ; y=2 Giải thích các bước giải: ⇔$\left \{ {{288x=21x^2-21y^2} \atop {252xy-36y^2=36x^2-36y^2}} \right.$ <=>$\left \{ {{21x^2-21y^2=288x} \atop {36x^2=252xy}} \right.$ <=>$\left \{ {{21x^2-21y^2=288x} \atop {x=7y}} \right.$ =>$\left \{ {{1029y^2-21y^2=2016y} \atop {x=7y}} \right.$ <=> $\left \{ {{1008y^2=2016y} \atop {x=7y}} \right.$ <=> $\left \{ {{y=2} \atop {x=14}} \right.$ {nếu ko xem đc thì copy vào phần công thức có hình số pi ở dưới để dịch nha 🙂 } Bình luận
Đáp án: $\left( x;y \right)=\left( 0;0 \right)\,;\,\left( 14;2 \right)$ Giải thích: $\begin{cases}288x=21\left( {{x}^{2}}-{{y}^{2}} \right)\,\,\,\,\,\,\,\,\left(1\right)\\252xy-36{{y}^{2}}=36\left( {{x}^{2}}-{{y}^{2}} \right)\,\,\,\,\,\,\,\,\left(2\right)\end{cases}$ $\left( 2 \right)\Leftrightarrow 252xy-36{{y}^{2}}=36{{x}^{2}}-36{{y}^{2}}$ $\,\,\,\,\,\,\,\Leftrightarrow 36{{x}^{2}}-252xy=0$ $\,\,\,\,\,\,\,\Leftrightarrow {{x}^{2}}-7xy=0$ $\,\,\,\,\,\,\,\Leftrightarrow x\left( x-7y \right)=0$ $\,\,\,\,\,\,\,\Leftrightarrow\left[\begin{array}{1}x=0\\x=7y\end{array}\right.$ Khi $x=0$, thế vào phương trình $\left( 1 \right)$ Ta tìm được $y=0$ Khi $x=7y$, thế vào phương trình $\left( 1 \right)$ $\,\,\,\,\,\,\,288\,.\,7y=21\left[ {{\left( 7y \right)}^{2}}-{{y}^{2}} \right]=0$ $\Leftrightarrow 1008{{y}^{2}}-2016y=0$ $\Leftrightarrow\left[\begin{array}{1}y=0\\y=2\end{array}\right.$ $\to\left[\begin{array}{1}x=0\\x=14\end{array}\right.$ Vậy $\left( x;y \right)=\left( 0\,;\,0 \right)\,;\,\left( 14;2 \right)$ Bình luận
Đáp án:
x=14 ; y=2
Giải thích các bước giải:
⇔$\left \{ {{288x=21x^2-21y^2} \atop {252xy-36y^2=36x^2-36y^2}} \right.$ <=>$\left \{ {{21x^2-21y^2=288x} \atop {36x^2=252xy}} \right.$ <=>$\left \{ {{21x^2-21y^2=288x} \atop {x=7y}} \right.$ =>$\left \{ {{1029y^2-21y^2=2016y} \atop {x=7y}} \right.$ <=> $\left \{ {{1008y^2=2016y} \atop {x=7y}} \right.$ <=> $\left \{ {{y=2} \atop {x=14}} \right.$
{nếu ko xem đc thì copy vào phần công thức có hình số pi ở dưới để dịch nha 🙂 }
Đáp án: $\left( x;y \right)=\left( 0;0 \right)\,;\,\left( 14;2 \right)$
Giải thích:
$\begin{cases}288x=21\left( {{x}^{2}}-{{y}^{2}} \right)\,\,\,\,\,\,\,\,\left(1\right)\\252xy-36{{y}^{2}}=36\left( {{x}^{2}}-{{y}^{2}} \right)\,\,\,\,\,\,\,\,\left(2\right)\end{cases}$
$\left( 2 \right)\Leftrightarrow 252xy-36{{y}^{2}}=36{{x}^{2}}-36{{y}^{2}}$
$\,\,\,\,\,\,\,\Leftrightarrow 36{{x}^{2}}-252xy=0$
$\,\,\,\,\,\,\,\Leftrightarrow {{x}^{2}}-7xy=0$
$\,\,\,\,\,\,\,\Leftrightarrow x\left( x-7y \right)=0$
$\,\,\,\,\,\,\,\Leftrightarrow\left[\begin{array}{1}x=0\\x=7y\end{array}\right.$
Khi $x=0$, thế vào phương trình $\left( 1 \right)$
Ta tìm được $y=0$
Khi $x=7y$, thế vào phương trình $\left( 1 \right)$
$\,\,\,\,\,\,\,288\,.\,7y=21\left[ {{\left( 7y \right)}^{2}}-{{y}^{2}} \right]=0$
$\Leftrightarrow 1008{{y}^{2}}-2016y=0$
$\Leftrightarrow\left[\begin{array}{1}y=0\\y=2\end{array}\right.$
$\to\left[\begin{array}{1}x=0\\x=14\end{array}\right.$
Vậy $\left( x;y \right)=\left( 0\,;\,0 \right)\,;\,\left( 14;2 \right)$