Giải hệ phương trình : $\left\{\begin{array}{l}(xy+7)(x^2y^2+6)=4y^3\\y^3+15=xy^4\end{array}\right.$

Giải hệ phương trình : $\left\{\begin{array}{l}(xy+7)(x^2y^2+6)=4y^3\\y^3+15=xy^4\end{array}\right.$

0 bình luận về “Giải hệ phương trình : $\left\{\begin{array}{l}(xy+7)(x^2y^2+6)=4y^3\\y^3+15=xy^4\end{array}\right.$”

  1. Đáp án:

    $\left \{ {{(xy+7)(x^2y^2+6)=4y^3} \atop {y^3+15=xy^4}} \right.$ 
    ⇔$\left \{ {{(xy+7)(x^2y^2+6)=4y^3} \atop {y^3(xy-1)=15}} \right.$ 
    ⇔$\left \{ {{(xy+7)(x^2y^2+6)=4.15:(xy-1)} \atop {y^3=15:(xy-1)}} \right.$ 
    ⇔$\left \{ {{(xy+7)(xy-1)(x^2y^2+6)=60} \atop {y^3=15:(xy-1)}} \right.$ 
    ⇔$\left \{ {{x^4y^4+6x^3y^3-x^2y^2+36xy-42=60} \atop {y^3=15:(xy-1)}} \right.$ 
    ⇔$\left \{ {{\left[ \begin{array}{l}xy=1,754824798\\xy=-7,129853629\end{array} \right.} \atop {y^3=15:(xy-1)}} \right.$  
    Từ đó suy ra x,y

     

     

    Bình luận

Viết một bình luận