GIẢI HỆ PHƯƠNG TRÌNH: $\left \{ {{x(y-1)+y(x+1)=6} \atop {(x-1)(y+1)=1}} \right.$ cứu mạng 22/07/2021 Bởi Mackenzie GIẢI HỆ PHƯƠNG TRÌNH: $\left \{ {{x(y-1)+y(x+1)=6} \atop {(x-1)(y+1)=1}} \right.$ cứu mạng
Đáp án: \[\left[ \begin{array}{l}x = 2;\,\,y = – \frac{4}{3}\\x = – \frac{4}{3};\,\,\,\,y = 2\end{array} \right.\] Giải thích các bước giải: Ta có: \(\begin{array}{l}\left\{ \begin{array}{l}x\left( {y – 1} \right) + y\left( {x + 1} \right) = 6\\\left( {x – 1} \right)\left( {y + 1} \right) = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}xy – x + xy + y = 6\\xy + x – y – 1 = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2xy – \left( {x – y} \right) = 6\\xy + \left( {x – y} \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = \frac{8}{3}\\x – y = – \frac{2}{3}\end{array} \right.\\x – y = – \frac{2}{3} \Rightarrow y = x – \frac{2}{3}\\xy = \frac{8}{3} \Leftrightarrow x\left( {x – \frac{2}{3}} \right) = \frac{8}{3} \Leftrightarrow {x^2} – \frac{2}{3}x – \frac{8}{3} = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2;\,\,y = – \frac{4}{3}\\x = – \frac{4}{3};\,\,\,\,y = 2\end{array} \right.\end{array}\) Bình luận
Đáp án:
\[\left[ \begin{array}{l}
x = 2;\,\,y = – \frac{4}{3}\\
x = – \frac{4}{3};\,\,\,\,y = 2
\end{array} \right.\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
x\left( {y – 1} \right) + y\left( {x + 1} \right) = 6\\
\left( {x – 1} \right)\left( {y + 1} \right) = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
xy – x + xy + y = 6\\
xy + x – y – 1 = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2xy – \left( {x – y} \right) = 6\\
xy + \left( {x – y} \right) = 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
xy = \frac{8}{3}\\
x – y = – \frac{2}{3}
\end{array} \right.\\
x – y = – \frac{2}{3} \Rightarrow y = x – \frac{2}{3}\\
xy = \frac{8}{3} \Leftrightarrow x\left( {x – \frac{2}{3}} \right) = \frac{8}{3} \Leftrightarrow {x^2} – \frac{2}{3}x – \frac{8}{3} = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2;\,\,y = – \frac{4}{3}\\
x = – \frac{4}{3};\,\,\,\,y = 2
\end{array} \right.
\end{array}\)