giải hệ phương trình sau $\left \{ {{x^2-2xy+3y^2=9} \atop {x^2-4xy+5y^2=5}} \right.$ 26/07/2021 Bởi Madeline giải hệ phương trình sau $\left \{ {{x^2-2xy+3y^2=9} \atop {x^2-4xy+5y^2=5}} \right.$
Đáp án: Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}{x^2} – 2xy + 3{y^2} = 9\\{x^2} – 4xy + 5{y^2} = 5\end{array} \right. \to \left\{ \begin{array}{l}3xy – 2{y^2} = 4\\{x^2} – 2xy + 3{y^2} = 9\end{array} \right.\\ \to \left\{ \begin{array}{l}y(3x – 2y) = 4\\{x^2} – 2xy + 3{y^2} = 9\end{array} \right. \to \left\{ \begin{array}{l}x = (\frac{4}{y} + 2y):3 = \frac{{4 + 2{y^2}}}{{3y}}\\\frac{{16 + 16{y^2} + 4{y^4}}}{{9{y^2}}} – 2.\frac{{4 + 2{y^2}}}{3} + 3{y^2} = 9(*)\end{array} \right.\\\left( * \right) \to 16 + 16{y^2} + 4{y^4} – 24{y^2} – 12{y^4} + 27{y^4} = 81{y^2}\\ \to 19{y^4} – 89{y^2} + 16 = 0 \to \left[ \begin{array}{l}{y^2} = \frac{{89 + 3\sqrt {745} }}{{38}}\\{y^2} = \frac{{89 + 3\sqrt {745} }}{{38}}\end{array} \right.\\ \to \left[ \begin{array}{l}y = \pm \sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} \\y = \pm \sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}} \end{array} \right. \to \left[ \begin{array}{l}x = \pm \frac{{4 + 2{{\left( {\sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} } \right)}^2}}}{{3\left( {\sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} } \right)}}\\x = \pm \frac{{4 + 2{{\left( {\sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}} } \right)}^2}}}{{3\left( {\sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}} } \right)}}\end{array} \right.\end{array}\) Bình luận
lay (1) tru (2) <=>2xy-2y²=4 <=>xy-y²=2 xet y=0 =>phuong tinh vo nghiem xet y khac 0 =>x-y=2 <=>x=y+2 thay vao (1) <=>(y+2)²-2y(y+2)+3y²=9 =>tu tinh y roi tinh dc x nho vote 5* va chon cau tra loi hay nhat nhe!!! Bình luận
Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} – 2xy + 3{y^2} = 9\\
{x^2} – 4xy + 5{y^2} = 5
\end{array} \right. \to \left\{ \begin{array}{l}
3xy – 2{y^2} = 4\\
{x^2} – 2xy + 3{y^2} = 9
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y(3x – 2y) = 4\\
{x^2} – 2xy + 3{y^2} = 9
\end{array} \right. \to \left\{ \begin{array}{l}
x = (\frac{4}{y} + 2y):3 = \frac{{4 + 2{y^2}}}{{3y}}\\
\frac{{16 + 16{y^2} + 4{y^4}}}{{9{y^2}}} – 2.\frac{{4 + 2{y^2}}}{3} + 3{y^2} = 9(*)
\end{array} \right.\\
\left( * \right) \to 16 + 16{y^2} + 4{y^4} – 24{y^2} – 12{y^4} + 27{y^4} = 81{y^2}\\
\to 19{y^4} – 89{y^2} + 16 = 0 \to \left[ \begin{array}{l}
{y^2} = \frac{{89 + 3\sqrt {745} }}{{38}}\\
{y^2} = \frac{{89 + 3\sqrt {745} }}{{38}}
\end{array} \right.\\
\to \left[ \begin{array}{l}
y = \pm \sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} \\
y = \pm \sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}}
\end{array} \right. \to \left[ \begin{array}{l}
x = \pm \frac{{4 + 2{{\left( {\sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} } \right)}^2}}}{{3\left( {\sqrt {\frac{{89 + 3\sqrt {745} }}{{38}}} } \right)}}\\
x = \pm \frac{{4 + 2{{\left( {\sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}} } \right)}^2}}}{{3\left( {\sqrt {\frac{{89 – 3\sqrt {745} }}{{38}}} } \right)}}
\end{array} \right.
\end{array}\)
lay (1) tru (2)
<=>2xy-2y²=4
<=>xy-y²=2
xet y=0
=>phuong tinh vo nghiem
xet y khac 0
=>x-y=2 <=>x=y+2
thay vao (1)
<=>(y+2)²-2y(y+2)+3y²=9
=>tu tinh y roi tinh dc x
nho vote 5* va chon cau tra loi hay nhat nhe!!!