giải hệ pt (x-1)(y-1)(x+y-2)=6 x^2+y^2-2x-2y-3=0

giải hệ pt
(x-1)(y-1)(x+y-2)=6
x^2+y^2-2x-2y-3=0

0 bình luận về “giải hệ pt (x-1)(y-1)(x+y-2)=6 x^2+y^2-2x-2y-3=0”

  1. Đáp án:

    \[\left[ \begin{array}{l}
    x = 2;\,\,y = 3\\
    x = 3;\,\,y = 2
    \end{array} \right.\]

    Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \left\{ \begin{array}{l}
    \left( {x – 1} \right)\left( {y – 1} \right)\left( {x + y – 2} \right) = 6\\
    {x^2} + {y^2} – 2x – 2y – 3 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left( {x – 1} \right)\left( {y – 1} \right)\left( {\left( {x – 1} \right) + \left( {y – 1} \right)} \right) = 6\\
    \left( {{x^2} – 2x + 1} \right) + \left( {{y^2} – 2y + 1} \right) – 5 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \left( {x – 1} \right)\left( {y – 1} \right)\left( {\left( {x – 1} \right) + \left( {y – 1} \right)} \right) = 6\\
    {\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} = 5
    \end{array} \right.
    \end{array}\)

    Đặt \(a = x – 1;\,\,\,b = y – 1\), khi đó, hệ phương trình trên trở thành:

    \(\begin{array}{l}
    \left\{ \begin{array}{l}
    ab.\left( {a + b} \right) = 6\\
    {a^2} + {b^2} = 5
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    {\left( {a + b} \right)^2} – 2ab = 5
    \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {a,b \ne 0} \right)\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    {\left( {a + b} \right)^2} – 2.\dfrac{6}{{a + b}} = 5
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    {\left( {a + b} \right)^3} – 12 = 5\left( {a + b} \right)
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    {\left( {a + b} \right)^3} – 5\left( {a + b} \right) – 12 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    \left[ {{{\left( {a + b} \right)}^3} – 3.{{\left( {a + b} \right)}^2}} \right] + \left[ {3.{{\left( {a + b} \right)}^2} – 9\left( {a + b} \right)} \right] + \left[ {4.\left( {a + b} \right) – 12} \right] = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    \left[ {\left( {a + b} \right) – 3} \right]\left[ {{{\left( {a + b} \right)}^2} + 3.\left( {a + b} \right) + 4} \right] = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    ab = \dfrac{6}{{a + b}}\\
    a + b = 3
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    a + b = 3\\
    ab = 2
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    b = 3 – a\\
    a.\left( {3 – a} \right) = 2
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    b = 3 – a\\
    {a^2} – 3a + 2 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    b = 3 – a\\
    \left( {a – 1} \right)\left( {a – 2} \right) = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    a = 1;\,\,b = 2\\
    a = 2;\,\,b = 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 2;\,\,y = 3\\
    x = 3;\,\,y = 2
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận