giải p/t sau: 1.x(x+3)+a(a-30)=2(ax-1) , a là hằng số 2.x^3+8 x _________={___+1}^3 2 2 02/11/2021 Bởi Sarah giải p/t sau: 1.x(x+3)+a(a-30)=2(ax-1) , a là hằng số 2.x^3+8 x _________={___+1}^3 2 2
Giải thích các bước giải: 1.Ta có: $x(x+3)+a(a-30)=2(ax-1)$ $\to x^2+3x+a^2-30a=2ax-2$ $\to x^2+3x-2ax+a^2-30a+2=0$ $\to x^2+x(3-2a)+a^2-30a+2=0$ $\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2-(\dfrac{3-2a}{2})^2+a^2-30a+2=0$ $\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2-\dfrac{108a+1}{4}=0$ $\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2=\dfrac{108a+1}{4}$ $\to (x+\dfrac{3-2a}{2})^2=\dfrac{108a+1}{4}$ Nếu $a>-\dfrac1{108}\to 108a+1>0$ $\to$Phương trình có $2$ nghiệm phân biệt $x=\dfrac{-(3-2a)\pm\sqrt{108a+1}}{2}$ Nếu $a=-\dfrac1{108}\to 108a+1=0$ $\to$Phương trình có nghiệm kép $x=\dfrac{-3+2\cdot \dfrac{-1}{108}}{2}=\dfrac{-163}{108}$ Nếu $a<-\dfrac1{108}\to 108a+1<0$ $\to$Phương trình vô nghiệm 2.Ta có: $\dfrac{x^3+8}{2}=\dfrac{(x+1)^3}{2}$ $\to x^3+8=(x+1)^3$ $\to x^3+8=x^3+3x^2+3x+1$ $\to 3x^2+3x-7=0$ $\to x^2+x-\dfrac73=0$ $\to x^2+2x\cdot\dfrac12+(\dfrac12)^2-\dfrac{31}{12}=0$ $\to (x+\dfrac12)^2-\dfrac{31}{12}=0$ $\to (x+\dfrac12)^2=\dfrac{31}{12}$ $\to x+\dfrac12=\pm\sqrt{\dfrac{31}{12}}$ $\to x=-\dfrac12\pm\sqrt{\dfrac{31}{12}}$ Bình luận
Giải thích các bước giải:
1.Ta có:
$x(x+3)+a(a-30)=2(ax-1)$
$\to x^2+3x+a^2-30a=2ax-2$
$\to x^2+3x-2ax+a^2-30a+2=0$
$\to x^2+x(3-2a)+a^2-30a+2=0$
$\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2-(\dfrac{3-2a}{2})^2+a^2-30a+2=0$
$\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2-\dfrac{108a+1}{4}=0$
$\to x^2+2x\cdot \dfrac{3-2a}{2}+(\dfrac{3-2a}{2})^2=\dfrac{108a+1}{4}$
$\to (x+\dfrac{3-2a}{2})^2=\dfrac{108a+1}{4}$
Nếu $a>-\dfrac1{108}\to 108a+1>0$
$\to$Phương trình có $2$ nghiệm phân biệt $x=\dfrac{-(3-2a)\pm\sqrt{108a+1}}{2}$
Nếu $a=-\dfrac1{108}\to 108a+1=0$
$\to$Phương trình có nghiệm kép $x=\dfrac{-3+2\cdot \dfrac{-1}{108}}{2}=\dfrac{-163}{108}$
Nếu $a<-\dfrac1{108}\to 108a+1<0$
$\to$Phương trình vô nghiệm
2.Ta có:
$\dfrac{x^3+8}{2}=\dfrac{(x+1)^3}{2}$
$\to x^3+8=(x+1)^3$
$\to x^3+8=x^3+3x^2+3x+1$
$\to 3x^2+3x-7=0$
$\to x^2+x-\dfrac73=0$
$\to x^2+2x\cdot\dfrac12+(\dfrac12)^2-\dfrac{31}{12}=0$
$\to (x+\dfrac12)^2-\dfrac{31}{12}=0$
$\to (x+\dfrac12)^2=\dfrac{31}{12}$
$\to x+\dfrac12=\pm\sqrt{\dfrac{31}{12}}$
$\to x=-\dfrac12\pm\sqrt{\dfrac{31}{12}}$