giải phương trình : 1) Cos2x . Tan x =0 2) Sin2x . Cot x =0 23/07/2021 Bởi Iris giải phương trình : 1) Cos2x . Tan x =0 2) Sin2x . Cot x =0
Đáp án: 1) $\left[ \begin{array}{l}x=\dfrac{\pi}{ 4} +\dfrac{k\pi}{ 2}\\ x =k\pi\end{array} \right. (k\in\mathbb{Z})$ 2) $\left[ \begin{array}{l}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{2}+k\pi\end{array} \right. (k\in\mathbb{Z})$ Giải thích các bước giải: 1) $\cos 2x . \tan x =0\ (*)$ ĐKXĐ: $x\neq \dfrac{\pi}{ 2} + k\pi$ $(*)⇔\left[ \begin{array}{l}\cos 2x=0\\\sin x =0\end{array} \right.$ $⇔\left[ \begin{array}{l}2x=\dfrac{\pi}{ 2} + k\pi\\x =k\pi\end{array} \right.$ $⇔\left[ \begin{array}{l}x=\dfrac{\pi}{ 4} +\dfrac{k\pi}{ 2}\\ x =k\pi\end{array} \right. (k\in\mathbb{Z})$ 2) $\sin 2x . \cot x =0\ (*)$ ĐKXĐ: $x\neq k\pi$ $(*)⇔\left[ \begin{array}{l}\sin 2x=0\\\cos x=0\end{array} \right.$ $⇔\left[ \begin{array}{l}2x=k\pi\\x=\dfrac{\pi}{2}+k\pi\end{array} \right.$ $⇔\left[ \begin{array}{l}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{2}+k\pi\end{array} \right. (k\in\mathbb{Z})$ Bình luận
Đáp án: Giải thích các bước giải: $1,cos2x.tanx=0$ $\text{ điều kiện}$ $x\neq$ $\frac{\pi}{2}+k\pi$ \(pt⇔\left[ \begin{array}{l}cos2x=0\\tanx=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}2x=\frac{\pi}{2}+k\pi\\x=k\pi\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=\frac{\pi}4+\frac{k\pi}2\\x=k\pi\end{array} \right.\) $2,sin2x.cotx=0$ $\text{điều kiện}$ $x\neq$ $k\pi$ \(pt⇔\left[ \begin{array}{l}sin2x=0\\cotx=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}2x=k\pi\\x=\frac{\pi}{2}+k\pi\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=\frac{k\pi}{2}\\x=\frac{\pi}{2}+k\pi\end{array} \right.\) Bình luận
Đáp án:
1) $\left[ \begin{array}{l}x=\dfrac{\pi}{ 4} +\dfrac{k\pi}{ 2}\\ x =k\pi\end{array} \right. (k\in\mathbb{Z})$
2) $\left[ \begin{array}{l}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{2}+k\pi\end{array} \right. (k\in\mathbb{Z})$
Giải thích các bước giải:
1) $\cos 2x . \tan x =0\ (*)$
ĐKXĐ: $x\neq \dfrac{\pi}{ 2} + k\pi$
$(*)⇔\left[ \begin{array}{l}\cos 2x=0\\\sin x =0\end{array} \right.$
$⇔\left[ \begin{array}{l}2x=\dfrac{\pi}{ 2} + k\pi\\x =k\pi\end{array} \right.$
$⇔\left[ \begin{array}{l}x=\dfrac{\pi}{ 4} +\dfrac{k\pi}{ 2}\\ x =k\pi\end{array} \right. (k\in\mathbb{Z})$
2) $\sin 2x . \cot x =0\ (*)$
ĐKXĐ: $x\neq k\pi$
$(*)⇔\left[ \begin{array}{l}\sin 2x=0\\\cos x=0\end{array} \right.$
$⇔\left[ \begin{array}{l}2x=k\pi\\x=\dfrac{\pi}{2}+k\pi\end{array} \right.$
$⇔\left[ \begin{array}{l}x=\dfrac{k\pi}{2}\\x=\dfrac{\pi}{2}+k\pi\end{array} \right. (k\in\mathbb{Z})$
Đáp án:
Giải thích các bước giải:
$1,cos2x.tanx=0$
$\text{ điều kiện}$ $x\neq$ $\frac{\pi}{2}+k\pi$
\(pt⇔\left[ \begin{array}{l}cos2x=0\\tanx=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}2x=\frac{\pi}{2}+k\pi\\x=k\pi\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\frac{\pi}4+\frac{k\pi}2\\x=k\pi\end{array} \right.\)
$2,sin2x.cotx=0$
$\text{điều kiện}$ $x\neq$ $k\pi$
\(pt⇔\left[ \begin{array}{l}sin2x=0\\cotx=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}2x=k\pi\\x=\frac{\pi}{2}+k\pi\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\frac{k\pi}{2}\\x=\frac{\pi}{2}+k\pi\end{array} \right.\)