giải phương trình x! – (x-1)! / (n+1)! =1/6 n!/(n-2)! -n!(n-1)! =3 n^3 +n!/(n-2)!=10 16/09/2021 Bởi Caroline giải phương trình x! – (x-1)! / (n+1)! =1/6 n!/(n-2)! -n!(n-1)! =3 n^3 +n!/(n-2)!=10
Đáp án: Giải thích các bước giải: \[\begin{array}{l} \frac{{n! – (n – 1)!}}{{(n + 1)!}} = \frac{1}{6}(dk:n \ge 1;n \in N)\\ \Leftrightarrow \frac{{n!}}{{(n + 1)!}} – \frac{{(n – 1)!}}{{(n + 1)!}} = \frac{1}{6}\\ \Leftrightarrow \frac{1}{{n + 1}} – \frac{1}{{n(n + 1)}} = \frac{1}{6}\\ \Leftrightarrow n = 5 \to tm\\ \frac{{n!}}{{(n – 2)!}} – \frac{{n!}}{{(n – 1)!}} = 3(dk:n \ge 2;n \in N)\\ \Leftrightarrow n(n – 1) – n = 3\\ \Leftrightarrow \left[ \begin{array}{l} n = 3 \to tm\\ n = – 1 \to loai \end{array} \right.\\ {n^3} + \frac{{n!}}{{(n – 2)!}} = 10(dk:n \ge 2;n \in N)\\ \Leftrightarrow {n^3} + n(n – 1) = 10\\ \Leftrightarrow n = 2 \to tm \end{array}\] Bình luận
Đáp án:
Giải thích các bước giải:
\[\begin{array}{l}
\frac{{n! – (n – 1)!}}{{(n + 1)!}} = \frac{1}{6}(dk:n \ge 1;n \in N)\\
\Leftrightarrow \frac{{n!}}{{(n + 1)!}} – \frac{{(n – 1)!}}{{(n + 1)!}} = \frac{1}{6}\\
\Leftrightarrow \frac{1}{{n + 1}} – \frac{1}{{n(n + 1)}} = \frac{1}{6}\\
\Leftrightarrow n = 5 \to tm\\
\frac{{n!}}{{(n – 2)!}} – \frac{{n!}}{{(n – 1)!}} = 3(dk:n \ge 2;n \in N)\\
\Leftrightarrow n(n – 1) – n = 3\\
\Leftrightarrow \left[ \begin{array}{l}
n = 3 \to tm\\
n = – 1 \to loai
\end{array} \right.\\
{n^3} + \frac{{n!}}{{(n – 2)!}} = 10(dk:n \ge 2;n \in N)\\
\Leftrightarrow {n^3} + n(n – 1) = 10\\
\Leftrightarrow n = 2 \to tm
\end{array}\]