Giải phương trình `x^12 + x^5 + x^7 + 1 = 0` 28/07/2021 Bởi Sarah Giải phương trình `x^12 + x^5 + x^7 + 1 = 0`
x^12+x^5+x^7+1=0 x^5(x^7+1)+(x^7+1)=0 (x^5+1)(x^7+1)=0 =>x^5+1=0 => x=-1 hoặc x^7+1=0 => x=-1; Bình luận
Đáp án: Giải thích các bước giải: `x^12+x^5+x^7+1=0` `<=>x^5(x^7+1)+(x^7+1)=0` `<=>(x^5+1)(x^7+1)=0` `+)x^5+1=0` `<=>x^5=-1=(-1)^5` `=>x=-1` `+)x^7+1=0` `<=>x^7=-1=(-1)^7` `=>x=-1` Vậy `S={-1}` Bình luận
x^12+x^5+x^7+1=0
x^5(x^7+1)+(x^7+1)=0
(x^5+1)(x^7+1)=0
=>x^5+1=0 => x=-1
hoặc x^7+1=0 => x=-1;
Đáp án:
Giải thích các bước giải:
`x^12+x^5+x^7+1=0`
`<=>x^5(x^7+1)+(x^7+1)=0`
`<=>(x^5+1)(x^7+1)=0`
`+)x^5+1=0`
`<=>x^5=-1=(-1)^5`
`=>x=-1`
`+)x^7+1=0`
`<=>x^7=-1=(-1)^7`
`=>x=-1`
Vậy `S={-1}`