Giải phương trình (2sin x+1)*(2cos2x – √2)= 0 08/08/2021 Bởi Faith Giải phương trình (2sin x+1)*(2cos2x – √2)= 0
Đáp án: $\begin{array}{l}\left( {2\sin \,x + 1} \right)\left( {2cos2x – \sqrt 2 } \right) = 0\\ \Rightarrow \left[ \begin{array}{l}\sin \,x = – \frac{1}{2}\\cos2x = \frac{{\sqrt 2 }}{2}\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = – \frac{\pi }{6} + k2\pi \\x = \pi + \frac{\pi }{6} + k2\pi \\2x = \frac{\pi }{4} + k2\pi \\2x = – \frac{\pi }{4} + k2\pi \end{array} \right.\left( {k \in Z} \right)\\ \Rightarrow \left[ \begin{array}{l}x = – \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \\x = \frac{\pi }{8} + k\pi \\x = – \frac{\pi }{8} + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\left( {2\sin \,x + 1} \right)\left( {2cos2x – \sqrt 2 } \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\sin \,x = – \frac{1}{2}\\
cos2x = \frac{{\sqrt 2 }}{2}
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = – \frac{\pi }{6} + k2\pi \\
x = \pi + \frac{\pi }{6} + k2\pi \\
2x = \frac{\pi }{4} + k2\pi \\
2x = – \frac{\pi }{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
\Rightarrow \left[ \begin{array}{l}
x = – \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi \\
x = \frac{\pi }{8} + k\pi \\
x = – \frac{\pi }{8} + k\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}$