Giải phương trình: 2sin2xcos2x+√3cos4x+√2=0 4sin^2x+3√3sin2x-2cos^2x=4 01/09/2021 Bởi Julia Giải phương trình: 2sin2xcos2x+√3cos4x+√2=0 4sin^2x+3√3sin2x-2cos^2x=4
Giải thích các bước giải: Ta có: \(\begin{array}{l}*)\\2\sin 2x.\cos 2x + \sqrt 3 \cos 4x + \sqrt 2 = 0\\ \Leftrightarrow \sin 4x + \sqrt 3 \cos 4x + \sqrt 2 = 0\\ \Leftrightarrow \dfrac{1}{2}\sin 4x + \dfrac{{\sqrt 3 }}{2}\cos 4x + \dfrac{{\sqrt 2 }}{2} = 0\\ \Leftrightarrow \sin 4x.\cos \dfrac{\pi }{3} + \cos 4x.\sin \dfrac{\pi }{3} = – \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {4x + \dfrac{\pi }{3}} \right) = – \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l}4x + \dfrac{\pi }{3} = – \dfrac{\pi }{4} + k2\pi \\4x + \dfrac{\pi }{3} = \dfrac{{5\pi }}{4} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = – \dfrac{{7\pi }}{{48}} + \dfrac{{k\pi }}{2}\\x = \dfrac{{11\pi }}{{48}} + \dfrac{{k\pi }}{2}\end{array} \right.\\*)\\4{\sin ^2}x + 3\sqrt 3 \sin 2x – 2{\cos ^2}x = 4\\ \Leftrightarrow \left( {2{{\sin }^2}x – 1} \right) + 3\sqrt 3 \sin 2x + 2.\left( {{{\sin }^2}x – {{\cos }^2}x} \right) = 3\\ \Leftrightarrow – \cos 2x + 3\sqrt 3 \sin 2x + 2.\left( { – \cos 2x} \right) = 3\\ \Leftrightarrow 3\sqrt 3 \sin 2x – 3\cos 2x = 3\\ \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 2x – \dfrac{1}{2}\cos 2x = \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {2x – \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}2x – \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\2x – \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k\pi \\x = \dfrac{\pi }{2} + k\pi \end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
*)\\
2\sin 2x.\cos 2x + \sqrt 3 \cos 4x + \sqrt 2 = 0\\
\Leftrightarrow \sin 4x + \sqrt 3 \cos 4x + \sqrt 2 = 0\\
\Leftrightarrow \dfrac{1}{2}\sin 4x + \dfrac{{\sqrt 3 }}{2}\cos 4x + \dfrac{{\sqrt 2 }}{2} = 0\\
\Leftrightarrow \sin 4x.\cos \dfrac{\pi }{3} + \cos 4x.\sin \dfrac{\pi }{3} = – \dfrac{{\sqrt 2 }}{2}\\
\Leftrightarrow \sin \left( {4x + \dfrac{\pi }{3}} \right) = – \dfrac{{\sqrt 2 }}{2}\\
\Leftrightarrow \left[ \begin{array}{l}
4x + \dfrac{\pi }{3} = – \dfrac{\pi }{4} + k2\pi \\
4x + \dfrac{\pi }{3} = \dfrac{{5\pi }}{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = – \dfrac{{7\pi }}{{48}} + \dfrac{{k\pi }}{2}\\
x = \dfrac{{11\pi }}{{48}} + \dfrac{{k\pi }}{2}
\end{array} \right.\\
*)\\
4{\sin ^2}x + 3\sqrt 3 \sin 2x – 2{\cos ^2}x = 4\\
\Leftrightarrow \left( {2{{\sin }^2}x – 1} \right) + 3\sqrt 3 \sin 2x + 2.\left( {{{\sin }^2}x – {{\cos }^2}x} \right) = 3\\
\Leftrightarrow – \cos 2x + 3\sqrt 3 \sin 2x + 2.\left( { – \cos 2x} \right) = 3\\
\Leftrightarrow 3\sqrt 3 \sin 2x – 3\cos 2x = 3\\
\Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 2x – \dfrac{1}{2}\cos 2x = \dfrac{1}{2}\\
\Leftrightarrow \sin \left( {2x – \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
2x – \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\
2x – \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{6} + k\pi \\
x = \dfrac{\pi }{2} + k\pi
\end{array} \right.
\end{array}\)