giải phương trình: (x^3+x)/(x^2-x+1)^2 =2 05/09/2021 Bởi Alice giải phương trình: (x^3+x)/(x^2-x+1)^2 =2
Đáp án: x=1 Giải thích các bước giải: \(\begin{array}{l}\dfrac{{{x^3} + x}}{{{{\left( {{x^2} – x + 1} \right)}^2}}} = 2\\ \to {x^3} + x = 2{\left( {{x^2} – x + 1} \right)^2}\\ \to {x^3} + x = 2\left( {{x^4} + {x^2} + 1 – 2{x^3} + 2{x^2} – 2x} \right)\\ \to {x^3} + x = 2{x^4} + 2{x^2} + 2 – 4{x^3} + 4{x^2} – 4x\\ \to 2{x^4} – 5{x^3} + 6{x^2} – 5x + 2 = 0\\ \to 2{x^4} – 2{x^3} – 3{x^3} + 3{x^2} + 3{x^2} – 3x – 2x + 2 = 0\\ \to 2{x^3}\left( {x – 1} \right) – 3{x^2}\left( {x – 1} \right) + 3x\left( {x – 1} \right) – 2\left( {x – 1} \right) = 0\\ \to \left( {x – 1} \right)\left( {2{x^3} – 3{x^2} + 3x – 2} \right) = 0\\ \to \left[ \begin{array}{l}x – 1 = 0\\2{x^3} – 2{x^2} – {x^2} + x + 2x – 2 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\2{x^2}\left( {x – 1} \right) – x\left( {x – 1} \right) + 2\left( {x – 1} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\\left( {x – 1} \right)\left( {2{x^2} – x + 2} \right) = 0\end{array} \right.\\ \to x = 1\left( {do:2{x^2} – x + 2 > 0\forall x} \right)\end{array}\) Bình luận
Đáp án:
x=1
Giải thích các bước giải:
\(\begin{array}{l}
\dfrac{{{x^3} + x}}{{{{\left( {{x^2} – x + 1} \right)}^2}}} = 2\\
\to {x^3} + x = 2{\left( {{x^2} – x + 1} \right)^2}\\
\to {x^3} + x = 2\left( {{x^4} + {x^2} + 1 – 2{x^3} + 2{x^2} – 2x} \right)\\
\to {x^3} + x = 2{x^4} + 2{x^2} + 2 – 4{x^3} + 4{x^2} – 4x\\
\to 2{x^4} – 5{x^3} + 6{x^2} – 5x + 2 = 0\\
\to 2{x^4} – 2{x^3} – 3{x^3} + 3{x^2} + 3{x^2} – 3x – 2x + 2 = 0\\
\to 2{x^3}\left( {x – 1} \right) – 3{x^2}\left( {x – 1} \right) + 3x\left( {x – 1} \right) – 2\left( {x – 1} \right) = 0\\
\to \left( {x – 1} \right)\left( {2{x^3} – 3{x^2} + 3x – 2} \right) = 0\\
\to \left[ \begin{array}{l}
x – 1 = 0\\
2{x^3} – 2{x^2} – {x^2} + x + 2x – 2 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
2{x^2}\left( {x – 1} \right) – x\left( {x – 1} \right) + 2\left( {x – 1} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
\left( {x – 1} \right)\left( {2{x^2} – x + 2} \right) = 0
\end{array} \right.\\
\to x = 1\left( {do:2{x^2} – x + 2 > 0\forall x} \right)
\end{array}\)