giải phương trình $x^{3}$+6 $x^{2}$+5$x^{}$-3-(2$x^{}$+5) $\sqrt[2]{2x+3}$=0 26/11/2021 Bởi Peyton giải phương trình $x^{3}$+6 $x^{2}$+5$x^{}$-3-(2$x^{}$+5) $\sqrt[2]{2x+3}$=0
Đáp án: $\sqrt{2}$ Giải thích các bước giải: ĐKXĐ: $x\ge-\dfrac32$ Ta có: $x^3+6x^2+5x-3-(2x+5)\sqrt{2x+3}=0$ $\to x^3+6x^2+5x-3=(2x+5)\sqrt{2x+3}$ $\to x^3+6x^2+12x+8-7x-11=(2x+5)\sqrt{2x+3}$ $\to (x+2)^3-7x-11=(2x+3)\sqrt{2x+3}+2\sqrt{2x+3}$ $\to (x+2)^3-(x+2)=(\sqrt{2x+3})^3+3(2x+3)+3\sqrt{2x+3}+1-(\sqrt{2x+3}+1)$ $\to (x+2)^3-(x+2)=(\sqrt{2x+3}+1)^3-(\sqrt{2x+3}+1)$ Đặt $x+2=a, \sqrt{2x+3}+1=b$ Vì$ x\ge-\dfrac32\to a\ge \dfrac12, b\ge 1$ $\to a^3-a=b^3-b$ $\to (a^3-b^3)-(a-b)=0$ $\to (a-b)(a^2+ab+b^2)-(a-b)=0$ $\to (a-b)(a^2+ab+b^2-1)=0$ Ta có $a\ge \dfrac12,b\ge 1\to a^2+ab+b^2-1\ge \dfrac34>0$ $\to a-b=0$ $\to a=b$ $\to x+2=\sqrt{2x+3}+1$ $\to x+1=\sqrt{2x+3}$ $\to 2x+2=2\sqrt{2x+3}$ $\to (2x+3)-1=2\sqrt{2x+3}$ $\to (2x+3)-2\sqrt{2x+3}=1$ $\to (2x+3)-2\sqrt{2x+3}+1=2$ $\to (\sqrt{2x+3}-1)^2=2$ $\to \sqrt{2x+3}-1=\pm\sqrt{2}$ $\to \sqrt{2x+3}=1\pm\sqrt{2}$ Vì $\sqrt{2x+3}\ge 0$ $\to \sqrt{2x+3}=1+\sqrt{2}$ $\to x=\sqrt{2}$ Bình luận
Đáp án: $\sqrt{2}$
Giải thích các bước giải:
ĐKXĐ: $x\ge-\dfrac32$
Ta có:
$x^3+6x^2+5x-3-(2x+5)\sqrt{2x+3}=0$
$\to x^3+6x^2+5x-3=(2x+5)\sqrt{2x+3}$
$\to x^3+6x^2+12x+8-7x-11=(2x+5)\sqrt{2x+3}$
$\to (x+2)^3-7x-11=(2x+3)\sqrt{2x+3}+2\sqrt{2x+3}$
$\to (x+2)^3-(x+2)=(\sqrt{2x+3})^3+3(2x+3)+3\sqrt{2x+3}+1-(\sqrt{2x+3}+1)$
$\to (x+2)^3-(x+2)=(\sqrt{2x+3}+1)^3-(\sqrt{2x+3}+1)$
Đặt $x+2=a, \sqrt{2x+3}+1=b$
Vì$ x\ge-\dfrac32\to a\ge \dfrac12, b\ge 1$
$\to a^3-a=b^3-b$
$\to (a^3-b^3)-(a-b)=0$
$\to (a-b)(a^2+ab+b^2)-(a-b)=0$
$\to (a-b)(a^2+ab+b^2-1)=0$
Ta có $a\ge \dfrac12,b\ge 1\to a^2+ab+b^2-1\ge \dfrac34>0$
$\to a-b=0$
$\to a=b$
$\to x+2=\sqrt{2x+3}+1$
$\to x+1=\sqrt{2x+3}$
$\to 2x+2=2\sqrt{2x+3}$
$\to (2x+3)-1=2\sqrt{2x+3}$
$\to (2x+3)-2\sqrt{2x+3}=1$
$\to (2x+3)-2\sqrt{2x+3}+1=2$
$\to (\sqrt{2x+3}-1)^2=2$
$\to \sqrt{2x+3}-1=\pm\sqrt{2}$
$\to \sqrt{2x+3}=1\pm\sqrt{2}$
Vì $\sqrt{2x+3}\ge 0$
$\to \sqrt{2x+3}=1+\sqrt{2}$
$\to x=\sqrt{2}$