Giải phương trình : √3x-8 – √x+1= (2x-11)\5 28/07/2021 Bởi Maya Giải phương trình : √3x-8 – √x+1= (2x-11)\5
Đáp án: \[\left[ \begin{array}{l}x = 3\\x = 8\end{array} \right.\] Giải thích các bước giải: ĐKXĐ: \(x \ge \frac{8}{3}\) Ta có: \(\begin{array}{l}\sqrt {3x – 8} – \sqrt {x + 1} = \frac{{2x – 11}}{5}\\ \Leftrightarrow \left( {\sqrt {3x – 8} – \frac{{3x – 4}}{5}} \right) + \left( {\frac{{x + 7}}{5} – \sqrt {x + 1} } \right) = 0\\ \Leftrightarrow \left( {5\sqrt {3x – 8} – \left( {3x – 4} \right)} \right) + \left( {\left( {x + 7} \right) – 5\sqrt {x + 1} } \right) = 0\\ \Leftrightarrow \frac{{25\left( {3x – 8} \right) – \left( {9{x^2} – 24x + 16} \right)}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{{{x^2} + 14x + 49 – 25\left( {x + 1} \right)}}{{x + 7 + 5\sqrt {x + 1} }} = 0\\ \Leftrightarrow \frac{{ – 9{x^2} + 99x – 216}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{{{x^2} – 11x + 24}}{{x + 7 + 5\sqrt {x + 1} }} = 0\\ \Leftrightarrow \left( {{x^2} – 11x + 24} \right)\left( {\frac{{ – 9}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{1}{{x + 7 + 5\sqrt {x + 1} }}} \right) = 0\\ \Leftrightarrow {x^2} – 11x + 24 = 0\\ \Leftrightarrow \left( {x – 3} \right)\left( {x – 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 8\end{array} \right.\end{array}\) Bình luận
Đáp án:
\[\left[ \begin{array}{l}
x = 3\\
x = 8
\end{array} \right.\]
Giải thích các bước giải:
ĐKXĐ: \(x \ge \frac{8}{3}\)
Ta có:
\(\begin{array}{l}
\sqrt {3x – 8} – \sqrt {x + 1} = \frac{{2x – 11}}{5}\\
\Leftrightarrow \left( {\sqrt {3x – 8} – \frac{{3x – 4}}{5}} \right) + \left( {\frac{{x + 7}}{5} – \sqrt {x + 1} } \right) = 0\\
\Leftrightarrow \left( {5\sqrt {3x – 8} – \left( {3x – 4} \right)} \right) + \left( {\left( {x + 7} \right) – 5\sqrt {x + 1} } \right) = 0\\
\Leftrightarrow \frac{{25\left( {3x – 8} \right) – \left( {9{x^2} – 24x + 16} \right)}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{{{x^2} + 14x + 49 – 25\left( {x + 1} \right)}}{{x + 7 + 5\sqrt {x + 1} }} = 0\\
\Leftrightarrow \frac{{ – 9{x^2} + 99x – 216}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{{{x^2} – 11x + 24}}{{x + 7 + 5\sqrt {x + 1} }} = 0\\
\Leftrightarrow \left( {{x^2} – 11x + 24} \right)\left( {\frac{{ – 9}}{{5\sqrt {3x – 8} + 3x – 4}} + \frac{1}{{x + 7 + 5\sqrt {x + 1} }}} \right) = 0\\
\Leftrightarrow {x^2} – 11x + 24 = 0\\
\Leftrightarrow \left( {x – 3} \right)\left( {x – 8} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 3\\
x = 8
\end{array} \right.
\end{array}\)