giải phương trình (x+4)/(x^2-3x+2) – (x+1)/(x^2-4x+3)=(2x+5)/(x^2-4x+3) 17/10/2021 Bởi Serenity giải phương trình (x+4)/(x^2-3x+2) – (x+1)/(x^2-4x+3)=(2x+5)/(x^2-4x+3)
Đáp án: \(\left[ \begin{array}{l}x = 0\\x = \frac{1}{2}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ne \left\{ {1;2;3} \right\}\\\frac{{x + 4}}{{{x^2} – 3x + 2}} – \frac{{x + 1}}{{{x^2} – 4x + 3}} = \frac{{2x + 5}}{{{x^2} – 4x + 3}}\\ \to \frac{{x + 4}}{{{x^2} – 3x + 2}} = \frac{{2x + 5}}{{{x^2} – 4x + 3}} + \frac{{x + 1}}{{{x^2} – 4x + 3}}\\ \to \frac{{x + 4}}{{{x^2} – 3x + 2}} = \frac{{3x + 6}}{{{x^2} – 4x + 3}}\\ \to \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} = \frac{{3x + 6}}{{\left( {x – 1} \right)\left( {x – 3} \right)}}\\ \to \frac{{\left( {x + 4} \right)\left( {x – 3} \right) – \left( {3x + 6} \right)\left( {x – 2} \right)}}{{\left( {x – 1} \right)\left( {x – 3} \right)\left( {x – 2} \right)}} = 0\\ \to {x^2} + x – 12 – 3{x^2} + 12 = 0\\ \to – 2{x^2} + x = 0\\ \to x\left( { – 2x + 1} \right) = 0\\ \to \left[ \begin{array}{l}x = 0\\x = \frac{1}{2}\end{array} \right.\left( {TM} \right)\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = 0\\
x = \frac{1}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne \left\{ {1;2;3} \right\}\\
\frac{{x + 4}}{{{x^2} – 3x + 2}} – \frac{{x + 1}}{{{x^2} – 4x + 3}} = \frac{{2x + 5}}{{{x^2} – 4x + 3}}\\
\to \frac{{x + 4}}{{{x^2} – 3x + 2}} = \frac{{2x + 5}}{{{x^2} – 4x + 3}} + \frac{{x + 1}}{{{x^2} – 4x + 3}}\\
\to \frac{{x + 4}}{{{x^2} – 3x + 2}} = \frac{{3x + 6}}{{{x^2} – 4x + 3}}\\
\to \frac{{x + 4}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} = \frac{{3x + 6}}{{\left( {x – 1} \right)\left( {x – 3} \right)}}\\
\to \frac{{\left( {x + 4} \right)\left( {x – 3} \right) – \left( {3x + 6} \right)\left( {x – 2} \right)}}{{\left( {x – 1} \right)\left( {x – 3} \right)\left( {x – 2} \right)}} = 0\\
\to {x^2} + x – 12 – 3{x^2} + 12 = 0\\
\to – 2{x^2} + x = 0\\
\to x\left( { – 2x + 1} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
x = \frac{1}{2}
\end{array} \right.\left( {TM} \right)
\end{array}\)