Giải phương trình 4x ² +3x +3 = 4x √(x+3) +2 √(2x-1) Giải hộ mình với 29/09/2021 Bởi Josephine Giải phương trình 4x ² +3x +3 = 4x √(x+3) +2 √(2x-1) Giải hộ mình với
`4x^2+3x+3=4x.\sqrt{x+3}+2.\sqrt{2x-1} ` `ĐKXĐ` : `x+3 ≥0` ` 2x-1 ≥ 0` `⇔x≥1/2` `4x^2+3x+3=4x.\sqrt{x+3}+2.\sqrt{2x-1} ` ⇔`[(4x^2)-(4x.\sqrt{x+3})+(x+3)]+[(2x-1)+(2.\sqrt{2x-1})+1]=0` ⇔`(2x- \sqrt{x+3})^2+(\sqrt{2x-1}-1)^2=0` ⇒`(2x- \sqrt{x+3})^2=0` ` (\sqrt{2x-1}-1)^2=0 ` Xét : `2x-\sqrt{x+3}=0` ⇔`4x^2-(x+3)=0` ⇔`4x^2-x-3=0` ⇔`4x^2+3x-4x-3=0` ⇔`x(4x+3)-(4x+3)=0` ⇔`(x-1)(4x+3)=0` ⇔\(\left[ \begin{array}{l}x-1=0\\4x+3=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=1\\x=\frac{-3}{4}(KTM)\end{array} \right.\) ⇔`x=1` Xét : `\sqrt{2x-1}-1=0` `⇔2x-1-1=0` `⇔2x-2=0` `⇔x-1=0` `⇔x=1 ` Vậy `x=1` Bình luận
Đáp án: \(x=1.\) Giải thích các bước giải: \[\begin{array}{l} \,\,\,\,\,\,\,4{x^2} + 3x + 3 = 4x\sqrt {x + 3} + 2\sqrt {2x – 1} \,\,\,\,\left( {DK:\,\,\,x \ge \frac{1}{2}} \right)\\ \Leftrightarrow 4{x^2} – 4x\sqrt {x + 3} + x + 3 + 2x – 1 – 2\sqrt {2x – 1} + 1 = 0\\ \Leftrightarrow {\left( {2x – \sqrt {x + 3} } \right)^2} + {\left( {\sqrt {2x – 1} – 1} \right)^2} = 0\\ \Leftrightarrow \left\{ \begin{array}{l} 2x – \sqrt {x + 3} = 0\\ \sqrt {2x – 1} – 1 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x = \sqrt {x + 3} \\ \sqrt {2x – 1} = 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 4{x^2} = x + 3\\ 2x – 1 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 4{x^2} – x – 3 = 0\\ 2x = 2 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x = 1\\ x = – \frac{3}{4}\,\,\,\left( {ktm} \right) \end{array} \right.\\ x = 1 \end{array} \right. \Leftrightarrow x = 1\,\,\left( {tm} \right). \end{array}\] Bình luận
`4x^2+3x+3=4x.\sqrt{x+3}+2.\sqrt{2x-1} `
`ĐKXĐ` : `x+3 ≥0`
` 2x-1 ≥ 0`
`⇔x≥1/2`
`4x^2+3x+3=4x.\sqrt{x+3}+2.\sqrt{2x-1} `
⇔`[(4x^2)-(4x.\sqrt{x+3})+(x+3)]+[(2x-1)+(2.\sqrt{2x-1})+1]=0`
⇔`(2x- \sqrt{x+3})^2+(\sqrt{2x-1}-1)^2=0`
⇒`(2x- \sqrt{x+3})^2=0`
` (\sqrt{2x-1}-1)^2=0 `
Xét :
`2x-\sqrt{x+3}=0`
⇔`4x^2-(x+3)=0`
⇔`4x^2-x-3=0`
⇔`4x^2+3x-4x-3=0`
⇔`x(4x+3)-(4x+3)=0`
⇔`(x-1)(4x+3)=0`
⇔\(\left[ \begin{array}{l}x-1=0\\4x+3=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=1\\x=\frac{-3}{4}(KTM)\end{array} \right.\)
⇔`x=1`
Xét :
`\sqrt{2x-1}-1=0`
`⇔2x-1-1=0`
`⇔2x-2=0`
`⇔x-1=0`
`⇔x=1 `
Vậy `x=1`
Đáp án:
\(x=1.\)
Giải thích các bước giải:
\[\begin{array}{l}
\,\,\,\,\,\,\,4{x^2} + 3x + 3 = 4x\sqrt {x + 3} + 2\sqrt {2x – 1} \,\,\,\,\left( {DK:\,\,\,x \ge \frac{1}{2}} \right)\\
\Leftrightarrow 4{x^2} – 4x\sqrt {x + 3} + x + 3 + 2x – 1 – 2\sqrt {2x – 1} + 1 = 0\\
\Leftrightarrow {\left( {2x – \sqrt {x + 3} } \right)^2} + {\left( {\sqrt {2x – 1} – 1} \right)^2} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
2x – \sqrt {x + 3} = 0\\
\sqrt {2x – 1} – 1 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x = \sqrt {x + 3} \\
\sqrt {2x – 1} = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4{x^2} = x + 3\\
2x – 1 = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
4{x^2} – x – 3 = 0\\
2x = 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 1\\
x = – \frac{3}{4}\,\,\,\left( {ktm} \right)
\end{array} \right.\\
x = 1
\end{array} \right. \Leftrightarrow x = 1\,\,\left( {tm} \right).
\end{array}\]