giải phương trình |4x-9|-2x=-3 b) x2-3|x-1|-1=0 c) √x2+x+2=x+1 21/11/2021 Bởi Aubrey giải phương trình |4x-9|-2x=-3 b) x2-3|x-1|-1=0 c) √x2+x+2=x+1
Đáp án: a) \(\left[ \begin{array}{l}x = 3\\x = 2\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)\left| {4x – 9} \right| – 2x = – 3\\ \to \left[ \begin{array}{l}4x – 9 = – 3 + 2x\\4x – 9 = 3 – 2x\end{array} \right.\\ \to \left[ \begin{array}{l}2x = 6\\6x = 12\end{array} \right.\\ \to \left[ \begin{array}{l}x = 3\\x = 2\end{array} \right.\left( {TM} \right)\\b){x^2} – 3\left| {x – 1} \right| – 1 = 0\\ \to {x^2} – 1 = 3\left| {x – 1} \right|\\ \to \left[ \begin{array}{l}3x – 3 = {x^2} – 1\left( {DK:x \ge 1} \right)\\3x – 3 = – {x^2} + 1\left( {DK:x < 1} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}{x^2} – 3x + 2 = 0\\{x^2} + 3x – 4 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 2\\x = 1\\x = – 4\end{array} \right.\\c)\sqrt {{x^2} + x + 2} = x + 1\\ \to {x^2} + x + 2 = {x^2} + 2x + 1\left( {DK:x \ge – 1} \right)\\ \to x = 1\end{array}\) Bình luận
Đáp án:
a) \(\left[ \begin{array}{l}
x = 3\\
x = 2
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left| {4x – 9} \right| – 2x = – 3\\
\to \left[ \begin{array}{l}
4x – 9 = – 3 + 2x\\
4x – 9 = 3 – 2x
\end{array} \right.\\
\to \left[ \begin{array}{l}
2x = 6\\
6x = 12
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
x = 2
\end{array} \right.\left( {TM} \right)\\
b){x^2} – 3\left| {x – 1} \right| – 1 = 0\\
\to {x^2} – 1 = 3\left| {x – 1} \right|\\
\to \left[ \begin{array}{l}
3x – 3 = {x^2} – 1\left( {DK:x \ge 1} \right)\\
3x – 3 = – {x^2} + 1\left( {DK:x < 1} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
{x^2} – 3x + 2 = 0\\
{x^2} + 3x – 4 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2\\
x = 1\\
x = – 4
\end{array} \right.\\
c)\sqrt {{x^2} + x + 2} = x + 1\\
\to {x^2} + x + 2 = {x^2} + 2x + 1\left( {DK:x \ge – 1} \right)\\
\to x = 1
\end{array}\)