giải phương trình |4x-9|-2x=-3 b) x2-3|x-1|-1=0 c) √x2+x+2=x+1 21/11/2021 Bởi aikhanh giải phương trình |4x-9|-2x=-3 b) x2-3|x-1|-1=0 c) √x2+x+2=x+1
Đáp án: Giải thích các bước giải: a) $|4x-9|-2x=-3$ $|4x-9|=2x-3$ $Đk:x\geq \dfrac{3}{2}$ \(\left[ \begin{array}{l}4x-9=2x-3\\4x-9=-2x+3\end{array} \right.\) \(\left[ \begin{array}{l}2x=6\\6x=12\end{array} \right.\) \(\left[ \begin{array}{l}x=3\\x=2\end{array} \right.\) b)$x^2-3|x-1|-1=0$ $-3|x-1|=1-x^2$ $Đk:x\leq 1$ $|x-1|=\dfrac{-1}{3}+\dfrac{1}{3}x^2$ \(\left[ \begin{array}{l}x-1=\dfrac{-1}{3}+\dfrac{1}{3}x^2\\x-1=\dfrac{1}{3}-\dfrac{1}{3}x^2\end{array} \right.\) \(\left[ \begin{array}{l}\dfrac{1}{3}x^2+\dfrac{2}{3}-x=0\\\dfrac{1}{3}x^2-\dfrac{2}{3}+x=0(tự giải)\end{array} \right.\) c)$\sqrt{x^2+x+2}=x+1$ $Đk:x\geq -1$ $x^2+x+2=x^2+2x+1$ $x=1$ Bình luận
Đáp án:
Giải thích các bước giải:
a)
$|4x-9|-2x=-3$
$|4x-9|=2x-3$
$Đk:x\geq \dfrac{3}{2}$
\(\left[ \begin{array}{l}4x-9=2x-3\\4x-9=-2x+3\end{array} \right.\)
\(\left[ \begin{array}{l}2x=6\\6x=12\end{array} \right.\)
\(\left[ \begin{array}{l}x=3\\x=2\end{array} \right.\)
b)$x^2-3|x-1|-1=0$
$-3|x-1|=1-x^2$
$Đk:x\leq 1$
$|x-1|=\dfrac{-1}{3}+\dfrac{1}{3}x^2$
\(\left[ \begin{array}{l}x-1=\dfrac{-1}{3}+\dfrac{1}{3}x^2\\x-1=\dfrac{1}{3}-\dfrac{1}{3}x^2\end{array} \right.\)
\(\left[ \begin{array}{l}\dfrac{1}{3}x^2+\dfrac{2}{3}-x=0\\\dfrac{1}{3}x^2-\dfrac{2}{3}+x=0(tự giải)\end{array} \right.\)
c)$\sqrt{x^2+x+2}=x+1$
$Đk:x\geq -1$
$x^2+x+2=x^2+2x+1$
$x=1$