Giải phương trình 6x^3 + x^2 =2x (x+2)^2 – 2x(2x+3) = (x+1)^2 02/08/2021 Bởi Madeline Giải phương trình 6x^3 + x^2 =2x (x+2)^2 – 2x(2x+3) = (x+1)^2
Giải thích các bước giải: $a) 6x³ +x² = 2x$ `⇔ 6x^3 +x^2 -2x = 0``⇔ 6x².(x +2/3) -3x.(x +2/3) = 0` `⇔ (x +2/3).(6x² -3x) = 0` `⇔ 3x.(x +2/3).(2x -1) = 0` $⇔ \left[ \begin{array}{l}3x=0\\x +\dfrac{2}{3}=0\\2x -1 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=0\\x=\dfrac{-2}{3}\\x = \dfrac{1}{2}\end{array} \right.$ Vậy `S = {0; -2/3; 1/2}` $b) (x +2)² -2x.(2x +3) = (x +1)²$ `⇔ (x +2)² -(x +1)² -2x.(2x +3) = 0` `⇔ (x +2 -x -1).(x +2 +x +1) -4x² -6x = 0` `⇔ 2x +3 -4x² -6x = 0` `⇔ -4x² -4x +3 = 0` `⇔ -4x.(x -1/2) -6.(x -1/2) = 0` `⇔ (x -1/2).(-4x -6) = 0` $⇔ \left[ \begin{array}{l}x -\dfrac{1}{2}=0\\-4x -6=0\end{array} \right. ⇔ \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-3}{2}\end{array} \right.$ Vậy `S = {1/2; -3/2}` Bình luận
Đáp án: `6x³ + x² =2x` `⇔(6x³+x²-2x)=0` `⇔x(6x²+x-2)=0` `x=0` `6x²+x-2=0` `⇔6x²-3x+4x-2=0` `⇔3x(2x-1)2(2x-1)=0` `⇔(2x-1)(3x+2)=0` `2x-1=0` `⇔x=1/2` `3x+2=0` `⇔x=-2/3` vậy `S={0;frac{1}{2}’frac{-2}{3}}` `(x+2)²-2x(2x+3) =(x+1)²` `⇔(x+2)²-4x²-6-(x+1)²=0` `⇔(x+2)²-(x+1)²-4x²-6=0` `⇔(x+2-x-1)(x+2+x+1)-4x²-6=0` `⇔2x+3-4x²-6x=0` `⇔3-4x²-4x=0` `⇔-4x²+2x-6x+3=0` `⇔-4x(x-frac{1}{2})-6(x-frac{1}{2})` `⇔(x-frac{1}{2})(-4x-6)=0` `x-frac{1}{2}=0` `⇔x=1/2` `-4x-6=0` `⇔x=-3/2` vậy `S={frac{1}{2};frac{-3}{2}}` $\text{*Khiên}$ Giải thích các bước giải: Bình luận
Giải thích các bước giải:
$a) 6x³ +x² = 2x$
`⇔ 6x^3 +x^2 -2x = 0`
`⇔ 6x².(x +2/3) -3x.(x +2/3) = 0`
`⇔ (x +2/3).(6x² -3x) = 0`
`⇔ 3x.(x +2/3).(2x -1) = 0`
$⇔ \left[ \begin{array}{l}3x=0\\x +\dfrac{2}{3}=0\\2x -1 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=0\\x=\dfrac{-2}{3}\\x = \dfrac{1}{2}\end{array} \right.$
Vậy `S = {0; -2/3; 1/2}`
$b) (x +2)² -2x.(2x +3) = (x +1)²$
`⇔ (x +2)² -(x +1)² -2x.(2x +3) = 0`
`⇔ (x +2 -x -1).(x +2 +x +1) -4x² -6x = 0`
`⇔ 2x +3 -4x² -6x = 0`
`⇔ -4x² -4x +3 = 0`
`⇔ -4x.(x -1/2) -6.(x -1/2) = 0`
`⇔ (x -1/2).(-4x -6) = 0`
$⇔ \left[ \begin{array}{l}x -\dfrac{1}{2}=0\\-4x -6=0\end{array} \right. ⇔ \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-3}{2}\end{array} \right.$
Vậy `S = {1/2; -3/2}`
Đáp án:
`6x³ + x² =2x`
`⇔(6x³+x²-2x)=0`
`⇔x(6x²+x-2)=0`
`x=0`
`6x²+x-2=0`
`⇔6x²-3x+4x-2=0`
`⇔3x(2x-1)2(2x-1)=0`
`⇔(2x-1)(3x+2)=0`
`2x-1=0` `⇔x=1/2`
`3x+2=0` `⇔x=-2/3`
vậy `S={0;frac{1}{2}’frac{-2}{3}}`
`(x+2)²-2x(2x+3) =(x+1)²`
`⇔(x+2)²-4x²-6-(x+1)²=0`
`⇔(x+2)²-(x+1)²-4x²-6=0`
`⇔(x+2-x-1)(x+2+x+1)-4x²-6=0`
`⇔2x+3-4x²-6x=0`
`⇔3-4x²-4x=0`
`⇔-4x²+2x-6x+3=0`
`⇔-4x(x-frac{1}{2})-6(x-frac{1}{2})`
`⇔(x-frac{1}{2})(-4x-6)=0`
`x-frac{1}{2}=0` `⇔x=1/2`
`-4x-6=0` `⇔x=-3/2`
vậy `S={frac{1}{2};frac{-3}{2}}`
$\text{*Khiên}$
Giải thích các bước giải: