giải phương trình: a) (x-1) = x ² + 2 (x ∈ Z) b) x ² – 10xy – 11y ² = 13 (x ∈ Z) 12/11/2021 Bởi Melanie giải phương trình: a) (x-1) = x ² + 2 (x ∈ Z) b) x ² – 10xy – 11y ² = 13 (x ∈ Z)
1, $x-1=x^2+2$ $⇔x-1-x^2-2=0$ $⇔x^2-x+3=0$ $⇔(x^2-x+1/4)+11/4=0$ $⇔(x+1/2)^2+11/4=0$ mà $(x+1/2)^2≥0⇒(x+1/2)^2+11/4≥11/4∀x$ hay pt vô nghiệm Vậy $S=∅$ 2, $x^2-10xy-11y^2=13$ $⇔(x^2-10xy+25y^2)-36y^2=13$ $⇔(x-5y)^2-36y^2=13$ $⇔(x-5y-6y)(x-5y+6y)=13$ $⇔(x-11y)(x+y)=13$ TH1: $\left \{ {{x-11y=1} \atop {x+y=13}} \right.$ =>$-12y=-12$>$y=1$=>$x=12$ TH2: $\left \{ {{x-11y=-1} \atop {x+y=-13}} \right.$ =>$-12y=12$>$y=-1$=>$x=-12$ TH3: $\left \{ {{x-11y=13} \atop {x+y=1}} \right.$ =>$-12y=12$>$y=-1$=>$x=-12$ TH4: $\left \{ {{x-11y=-13} \atop {x+y=-1}} \right.$ =>$-12y=12$>$y=1$=>$x=12$ Vậy $(x,y)∈\{(12;1);(-12;-1)\}$ Bình luận
1, $x-1=x^2+2$
$⇔x-1-x^2-2=0$
$⇔x^2-x+3=0$
$⇔(x^2-x+1/4)+11/4=0$
$⇔(x+1/2)^2+11/4=0$
mà $(x+1/2)^2≥0⇒(x+1/2)^2+11/4≥11/4∀x$
hay pt vô nghiệm
Vậy $S=∅$
2, $x^2-10xy-11y^2=13$
$⇔(x^2-10xy+25y^2)-36y^2=13$
$⇔(x-5y)^2-36y^2=13$
$⇔(x-5y-6y)(x-5y+6y)=13$
$⇔(x-11y)(x+y)=13$
TH1: $\left \{ {{x-11y=1} \atop {x+y=13}} \right.$ =>$-12y=-12$>$y=1$=>$x=12$
TH2: $\left \{ {{x-11y=-1} \atop {x+y=-13}} \right.$ =>$-12y=12$>$y=-1$=>$x=-12$
TH3: $\left \{ {{x-11y=13} \atop {x+y=1}} \right.$ =>$-12y=12$>$y=-1$=>$x=-12$
TH4: $\left \{ {{x-11y=-13} \atop {x+y=-1}} \right.$ =>$-12y=12$>$y=1$=>$x=12$
Vậy $(x,y)∈\{(12;1);(-12;-1)\}$