Giải phương trình:
a/ (x^2+1)(x-1)=0
b/x^3+1=x(x+1)
c/ 7-(2x+4)=-(x+4)
d/ (x-1)-(2x-1)=9-x
e/ x(x+3)^2-3x=(x+2)^3+1
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
Giải phương trình:
a/ (x^2+1)(x-1)=0
b/x^3+1=x(x+1)
c/ 7-(2x+4)=-(x+4)
d/ (x-1)-(2x-1)=9-x
e/ x(x+3)^2-3x=(x+2)^3+1
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
Giải thích các bước giải:
a, (x² + 1)(x – 1) = 0
<=> x – 1 = 0 (vì x² + 1 > 0)
<=> x = 1
b, x³ + 1 = x(x + 1)
<=> (x + 1)(x² – x + 1) – x(x + 1) = 0
<=> (x + 1)(x² – x + 1 – x) = 0
<=> (x + 1)(x² – 2x + 1) = 0
<=> (x + 1)(x – 1)² = 0
<=> x + 1 = 0 hoặc (x – 1)² = 0
<=> x = – 1 hoặc x = 1
c, 7 – (2x + 4) = – (x + 4)
<=> 7 – 2x – 4 = – x – 4
<=> – 2x + 3 = – x – 4
<=> – 2x + x = – 4 – 3
<=> – x = – 7
<=> x = 7
d, (x – 1) – (2x – 1) = 9 – x
<=> x – 1 – 2x + 1 = 9 – x
<=> – x = 9 – x
<=> – x + x = 9
<=> 0x = 9 (vô nghiệm)
e, x(x + 3)² – 3x = (x + 2)³ + 1
<=> x(x² + 6x + 9) – 3x = x³ + 6x² + 12x + 8 + 1
<=> x³ + 6x² + 9x – 3x = x³ + 6x² + 12x + 9
<=> x³ +6x² +6x = x³ +6x² +12x + 9
<=> x³ + 6x² + 6x – x³ – 6x² – 12x = 9
<=> – 6x = 9 <=> x = – 3/2
f, (x – 3)(x + 4) – 2(4x – 2) = (x – 4)²
<=> x² +x – 12 – 8x + 4 = x² – 8x +16
<=> x² – 7x – 8 = x² – 8x + 16
<=> x² – 7x – x² + 8x = 16 + 8
<=> x = 24
Đáp án:
Giải thích các bước giải:
a/ (x^2+1)(x-1)=0
<=> x^2+1=0 hoặc x-1=0
<=> x=1 ( x^2+1≥1)
b/x^3+1=x(x+1)
<=> x^3+1-x(x+1)=0
<=> (x+1)(x²-x+1-x)=0
<=> (x+1)(x-1)²=0
<=> x+1=0 hoặc x-1=0
<=> x= -1 hoặc 1
c/ 7-(2x+4)=-(x+4)
<=> 7-2x-4+x+4=0
<=> -x=-7
<=. x=7
d/ (x-1)-(2x-1)=9-x
<=> x-1-2x+1-9+x=0
<=> 0x=9
-> ko có x TM
e/ x(x+3)^2-3x=(x+2)^3+1
<=> x[(x+3)²-3]=(x+2+1)[(x+2)²-x-2+1]=(x+3)[x²+3x+3]
<=>x³+6x²+6x-x³-3x²-3x-3x²-9x-9=0
<=> -6x=9
<=> x= -1,5
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
<=> x²+x-12-8x+4-x²+8x-16=0
<=> x=24