giải phương trình a: 2 × √3x-1 – 4 = 4x b: √x+ √2x-1 + √x- √2x-1 = √2 27/07/2021 Bởi Mackenzie giải phương trình a: 2 × √3x-1 – 4 = 4x b: √x+ √2x-1 + √x- √2x-1 = √2
Đáp án: $\begin{array}{l}a)2\sqrt {3x – 1} – 4 = 4x\\ \Rightarrow \sqrt {3x – 1} = 2x + 2\left( {dk:x \ge \frac{1}{3}} \right)\\ \Rightarrow 3x – 1 = {\left( {2x + 2} \right)^2}\\ \Rightarrow 3x – 1 = 4{x^2} + 8x + 4\\ \Rightarrow 4{x^2} + 5x + 5 = 0\\ \Rightarrow 4{x^2} + 2.2x.\frac{5}{4} + \frac{{25}}{{16}} + \frac{{55}}{{16}} = 0\\ \Rightarrow {\left( {2x + \frac{5}{4}} \right)^2} + \frac{{55}}{{16}} = 0\left( {vô\,nghiệm} \right)\\ \Rightarrow x \in \emptyset \\b)\\\sqrt {x + \sqrt {2x – 1} } + \sqrt {x – \sqrt {2x – 1} } = \sqrt 2 \left( {dkxd:x \ge \frac{1}{2}} \right)\\ \Rightarrow x + \sqrt {2x – 1} + 2\sqrt {x + \sqrt {2x – 1} } .\sqrt {x – \sqrt {2x – 1} } + x – \sqrt {2x – 1} = 2\\ \Rightarrow 2x + 2\sqrt {{x^2} – {{\left( {\sqrt {2x – 1} } \right)}^2}} = 2\\ \Rightarrow \sqrt {{x^2} – 2x + 1} = 1 – x\left( {dk:x \le 1} \right)\\ \Rightarrow {x^2} – 2x + 1 = {x^2} – 2x + 1\left( {\forall x} \right)\\ \Rightarrow \frac{1}{2} \le x \le 1\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)2\sqrt {3x – 1} – 4 = 4x\\
\Rightarrow \sqrt {3x – 1} = 2x + 2\left( {dk:x \ge \frac{1}{3}} \right)\\
\Rightarrow 3x – 1 = {\left( {2x + 2} \right)^2}\\
\Rightarrow 3x – 1 = 4{x^2} + 8x + 4\\
\Rightarrow 4{x^2} + 5x + 5 = 0\\
\Rightarrow 4{x^2} + 2.2x.\frac{5}{4} + \frac{{25}}{{16}} + \frac{{55}}{{16}} = 0\\
\Rightarrow {\left( {2x + \frac{5}{4}} \right)^2} + \frac{{55}}{{16}} = 0\left( {vô\,nghiệm} \right)\\
\Rightarrow x \in \emptyset \\
b)\\
\sqrt {x + \sqrt {2x – 1} } + \sqrt {x – \sqrt {2x – 1} } = \sqrt 2 \left( {dkxd:x \ge \frac{1}{2}} \right)\\
\Rightarrow x + \sqrt {2x – 1} + 2\sqrt {x + \sqrt {2x – 1} } .\sqrt {x – \sqrt {2x – 1} } + x – \sqrt {2x – 1} = 2\\
\Rightarrow 2x + 2\sqrt {{x^2} – {{\left( {\sqrt {2x – 1} } \right)}^2}} = 2\\
\Rightarrow \sqrt {{x^2} – 2x + 1} = 1 – x\left( {dk:x \le 1} \right)\\
\Rightarrow {x^2} – 2x + 1 = {x^2} – 2x + 1\left( {\forall x} \right)\\
\Rightarrow \frac{1}{2} \le x \le 1
\end{array}$