Giải phương trình a) $x^2-4x+\left|x-2\right|=6$ b)$8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\lef

Giải phương trình
a) $x^2-4x+\left|x-2\right|=6$
b)$8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+2016\right)^2$

0 bình luận về “Giải phương trình a) $x^2-4x+\left|x-2\right|=6$ b)$8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\lef”

  1. Giải thích các bước giải:

    a.Ta có :
    $x^2-4x+|x-2|=6$ 

    $\to x^2-4x+4+|x-2|-10=0$ 

    $\to (x-2)^2+|x-2|-10=0$ 

    $\to |x-2|^2+|x-2|-10=0$ 

    $\to |x-2|=\dfrac{-1+\sqrt{41}}{2}, |x-2|\ge 0\to x-2=\pm \dfrac{-1+\sqrt{41}}{2}\to x=2\pm \dfrac{-1+\sqrt{41}}{2}$

    b.Đặt $x+\dfrac 1x=t\to x^2+\dfrac{1}{x^2}=t^2-2,|t|\ge 2$

    $\to 8t^2+4(t^2-2)-4(t^2-2)t^2=(x+2016)^2$

    $\to -4t^4+20t^2-8=(x+2016)^2$

    $\to 4t^4-20t^2+8+(x+2016)^2=0$

    $\to (2t-5)^2+(x+2016)^2-17=0$

    $\to (2(x+\dfrac{1}{x})-5)^2+(x+2016)^2-17=0$

    $\to (2(x^2+1)-5x)^2+x^2(x+2016)^2-17x=0$

    $\to$Xem lại đề

    Bình luận

Viết một bình luận