Giải phương trình: a) x^2+x+5-3√x^2+x+3=0 b) x^2-2x+5-4√x^2-2x+2=0 Giúp mình nhé!!!! 31/07/2021 Bởi Alaia Giải phương trình: a) x^2+x+5-3√x^2+x+3=0 b) x^2-2x+5-4√x^2-2x+2=0 Giúp mình nhé!!!!
Đáp án: $\begin{array}{l}a){x^2} + x + 5 – 3\sqrt {{x^2} + x + 3} = 0\\\left( {dkxd:{x^2} + x + 3 \ge 0\,luon\,dung} \right)\\ \Rightarrow {x^2} + x + 3 – 3\sqrt {{x^2} + x + 3} + 2 = 0\\ \Rightarrow {\left( {\sqrt {{x^2} + x + 3} } \right)^2} – 3\sqrt {{x^2} + x + 3} + 2 = 0\\ \Rightarrow {\left( {\sqrt {{x^2} + x + 3} } \right)^2} – \sqrt {{x^2} + x + 3} – 2\sqrt {{x^2} + x + 3} + 2 = 0\\ \Rightarrow \left( {\sqrt {{x^2} + x + 3} – 1} \right)\left( {\sqrt {{x^2} + x + 3} – 2} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}\sqrt {{x^2} + x + 3} = 1\\\sqrt {{x^2} + x + 3} = 2\end{array} \right. \Rightarrow \left[ \begin{array}{l}{x^2} + x + 3 = 1\\{x^2} + x + 3 = 4\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} + x + 2 = 0\\{x^2} + x – 1 = 0\end{array} \right.\\ \Rightarrow x = \frac{{ – 1 \pm \sqrt 5 }}{2}\\b)\\{x^2} – 2x + 5 – 4\sqrt {{x^2} – 2x + 2} = 0\left( {txd:R} \right)\\ \Rightarrow {x^2} – 2x + 2 – 4\sqrt {{x^2} – 2x + 2} + 3 = 0\\ \Rightarrow {\left( {\sqrt {{x^2} – 2x + 2} } \right)^2} – 4\sqrt {{x^2} – 2x + 2} + 3 = 0\\ \Rightarrow \left[ \begin{array}{l}\sqrt {{x^2} – 2x + 2} = 1\\\sqrt {{x^2} – 2x + 2} = 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}{x^2} – 2x + 2 = 1\\{x^2} – 2x + 2 = 9\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} – 2x + 1 = 0\\{x^2} – 2x – 7 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 1\\x = 1 \pm 2\sqrt 2 \end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a){x^2} + x + 5 – 3\sqrt {{x^2} + x + 3} = 0\\
\left( {dkxd:{x^2} + x + 3 \ge 0\,luon\,dung} \right)\\
\Rightarrow {x^2} + x + 3 – 3\sqrt {{x^2} + x + 3} + 2 = 0\\
\Rightarrow {\left( {\sqrt {{x^2} + x + 3} } \right)^2} – 3\sqrt {{x^2} + x + 3} + 2 = 0\\
\Rightarrow {\left( {\sqrt {{x^2} + x + 3} } \right)^2} – \sqrt {{x^2} + x + 3} – 2\sqrt {{x^2} + x + 3} + 2 = 0\\
\Rightarrow \left( {\sqrt {{x^2} + x + 3} – 1} \right)\left( {\sqrt {{x^2} + x + 3} – 2} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\sqrt {{x^2} + x + 3} = 1\\
\sqrt {{x^2} + x + 3} = 2
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
{x^2} + x + 3 = 1\\
{x^2} + x + 3 = 4
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{x^2} + x + 2 = 0\\
{x^2} + x – 1 = 0
\end{array} \right.\\
\Rightarrow x = \frac{{ – 1 \pm \sqrt 5 }}{2}\\
b)\\
{x^2} – 2x + 5 – 4\sqrt {{x^2} – 2x + 2} = 0\left( {txd:R} \right)\\
\Rightarrow {x^2} – 2x + 2 – 4\sqrt {{x^2} – 2x + 2} + 3 = 0\\
\Rightarrow {\left( {\sqrt {{x^2} – 2x + 2} } \right)^2} – 4\sqrt {{x^2} – 2x + 2} + 3 = 0\\
\Rightarrow \left[ \begin{array}{l}
\sqrt {{x^2} – 2x + 2} = 1\\
\sqrt {{x^2} – 2x + 2} = 3
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
{x^2} – 2x + 2 = 1\\
{x^2} – 2x + 2 = 9
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{x^2} – 2x + 1 = 0\\
{x^2} – 2x – 7 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 1\\
x = 1 \pm 2\sqrt 2
\end{array} \right.
\end{array}$