giải phương trình : căn (x-3) – 2.căn(x^2-9 )=0 ——————–> giúp mk với <-----------------------------

giải phương trình : căn (x-3) – 2.căn(x^2-9 )=0
——————–> giúp mk với <-----------------------------

0 bình luận về “giải phương trình : căn (x-3) – 2.căn(x^2-9 )=0 ——————–> giúp mk với <-----------------------------”

  1. Đáp án: + Giải thích các bước giải:

    ĐK : `x \ge 3`

    `\sqrt{x-3}-2\sqrt{x^2-9}=0`

    `⇔ \sqrt{x-3}=2\sqrt{x^2-9}`

    `⇔ x – 3 = 4x^2 – 36`

    `⇔ 4x^2 – 36 = x – 3`

    `⇔ 4x^2 – 33 = x`

    `⇔ 4x^2 – x – 33=0`

    `\Delta = (-1)^2-4*4(-33)=529>0`

    `=>\sqrt{\Delta}=23`

    Do đó , phương trình có 2 nghiệm phân biệt :

    `x_1 = (-(-1)+23)/2.4=3(TM)`

    `x_2 = (-(-1)-23)/2.4=-11/4(KTM)` 

    Vậy `S = {3}`

     

    Bình luận
  2. `\sqrt{x-3}-2\sqrt{x^2-9}=0` ĐK: `x>=3`

    `<=> \sqrt{x-3}-2\sqrt{x-3}.\sqrt{x+3}=0`

    `<=> \sqrt{x-3}(1-2\sqrt{x+3})=0`

    `<=>`\(\left[ \begin{array}{l}\sqrt{x-3}=0\\1-2\sqrt{x+3}=0\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x-3=0\\\sqrt{x+3}=\dfrac{1}{2}\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=3\\x+3=\dfrac{1}{4}\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=3(tm)\\x=\dfrac{-11}{4} (ktm)\end{array} \right.\) 

    Vậy `S={3}`

    Bình luận

Viết một bình luận