Giải phương trình Cosx – √3 sinx =√2 3sin3x – 4cos3x = 5 2sinx + 2 cosx -√2 =0 5cos2x + 12sin2x – 13=0

Giải phương trình
Cosx – √3 sinx =√2
3sin3x – 4cos3x = 5
2sinx + 2 cosx -√2 =0
5cos2x + 12sin2x – 13=0

0 bình luận về “Giải phương trình Cosx – √3 sinx =√2 3sin3x – 4cos3x = 5 2sinx + 2 cosx -√2 =0 5cos2x + 12sin2x – 13=0”

  1. Đáp án:

    \[\begin{array}{l}
    a)\,\,\,\left[ \begin{array}{l}
    x = – \frac{\pi }{{12}} + k2\pi \\
    x = – \frac{{7\pi }}{{12}} + k2\pi
    \end{array} \right.\,\,\,\left( {k \in Z} \right)\\
    b)\,\,\,x = \frac{\alpha }{3} + \frac{\pi }{6} + \frac{{k2\pi }}{3}\,\,\,\left( {k \in Z} \right)\\
    c)\,\,\left[ \begin{array}{l}
    x = – \frac{\pi }{{12}} + k2\pi \\
    x = \frac{{7\pi }}{{12}} + k2\pi
    \end{array} \right.\,\,\,\left( {k \in Z} \right)\\
    d)\,\,\,x = \frac{\alpha }{2} + k\pi \,\,\,\left( {k \in Z} \right)
    \end{array}\]

    Giải thích các bước giải:

    \[\begin{array}{l}
    1)\,\,\,\cos x – \sqrt 3 \sin x = \sqrt 2 \\
    \Leftrightarrow \frac{1}{2}\cos x – \frac{{\sqrt 3 }}{2}\sin x = \frac{{\sqrt 2 }}{2}\\
    \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \cos \frac{\pi }{4}\\
    \Leftrightarrow \left[ \begin{array}{l}
    x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi \\
    x + \frac{\pi }{3} = – \frac{\pi }{4} + k2\pi
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = – \frac{\pi }{{12}} + k2\pi \\
    x = – \frac{{7\pi }}{{12}} + k2\pi
    \end{array} \right.\,\,\,\left( {k \in Z} \right)\\
    2)\,\,\,3\sin 3x – 4\cos 3x = 5\\
    \Leftrightarrow \frac{3}{5}\sin 3x – \frac{4}{5}\cos 3x = 1\\
    \Leftrightarrow \sin \left( {3x – \alpha } \right) = 1\,\,\,\,\left( {voi\,\,\,\,\cos \alpha = \frac{3}{5};\,\,\,\sin \alpha = \frac{4}{5}} \right)\\
    \Leftrightarrow 3x – \alpha = \frac{\pi }{2} + k2\pi \\
    \Leftrightarrow x = \frac{\alpha }{3} + \frac{\pi }{6} + \frac{{k2\pi }}{3}\,\,\,\left( {k \in Z} \right)\\
    3)\,\,\,2\sin x + 2\cos x – \sqrt 2 = 0\\
    \Leftrightarrow \sin x + \cos x = \frac{{\sqrt 2 }}{2}\\
    \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\
    \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{2}\, = \sin \frac{\pi }{6}\\
    \Leftrightarrow \left[ \begin{array}{l}
    x + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\
    x + \frac{\pi }{4} = \pi – \frac{\pi }{6} + k2\pi
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = – \frac{\pi }{{12}} + k2\pi \\
    x = \frac{{7\pi }}{{12}} + k2\pi
    \end{array} \right.\,\,\,\left( {k \in Z} \right)\\
    4)\,\,\,5\cos 2x + 12\sin 2x – 13 = 0\\
    \Leftrightarrow \frac{5}{{13}}\cos 2x + \frac{{12}}{{13}}\sin 2x = 1\\
    \Leftrightarrow \cos \left( {2x – \alpha } \right) = 1\,\,\,\left( {voi\,\,\,\cos \alpha = \frac{5}{{13}};\,\,\,\sin \alpha = \frac{{12}}{{13}}} \right)\\
    \Leftrightarrow 2x – \alpha = k2\pi \\
    \Leftrightarrow 2x = \alpha + k2\pi \\
    \Leftrightarrow x = \frac{\alpha }{2} + k\pi \,\,\,\left( {k \in Z} \right).
    \end{array}\]

    Bình luận

Viết một bình luận