Giải phương trình $\frac{x+3}{2012}$ + $\frac{x+2}{2013}$ = $\frac{x+2012}{3}$ + $\frac{x+2011}{4}$

Giải phương trình
$\frac{x+3}{2012}$ + $\frac{x+2}{2013}$ = $\frac{x+2012}{3}$ + $\frac{x+2011}{4}$

0 bình luận về “Giải phương trình $\frac{x+3}{2012}$ + $\frac{x+2}{2013}$ = $\frac{x+2012}{3}$ + $\frac{x+2011}{4}$”

  1. Đáp án + Giải thích các bước giải:

    `(x + 3)/2012 + (x + 2)/2013 = (x + 2012)/3 + (x + 2011)/4` $\\$ `<=> ((x + 3)/2012+1)+((x+2)/2013+1)=((x+2012)/3+1)+((x+2011)/4+1)` $\\$ `<=> (x + 2015)/2012 + (x + 2015)/2013 = (x + 2015)/3 + (x + 2015)/4` $\\$ `<=> (x + 2015)/2012 + (x + 2015)/2013 – (x + 2015)/3 – (x + 2015)/4 = 0` $\\$ `<=> (x + 2015)(1/2012 + 1/2013 – 1/3 – 1/4) = 0` $\\$ `<=> x + 2015 = 0 <=> x = -2015(vì 1/2012 + 1/2013 – 1/3 – 1/4 < 0)` 

    Vậy `S = {-2015}`

    Bình luận
  2. $\text{Đáp án + Giải thích các bước giải:}$

    `(x+3)/(2012)+(x+2)/(2013)=(x+2012)/(3)+(x+2011)/(4)`

    `<=>((x+3)/(2012)+1)+((x+2)/(2013)+1)=((x+2012)/(3)+1)+((x+2011)/(4)+1)`

    `<=>(x+3+2012)/(2012)+(x+2+2013)/(2013)=(x+2012+3)/(3)+(x+2011+4)/(4)`

    `<=>(x+2015)/(2012)+(x+2015)/(2013)-(x+2015)/(3)-(x+2015)/(4)=0`

    `<=>(x+2015)((1)/(2012)+(1)/(2013)-(1)/(3)-(1)/(4))=0`

    `<=>x+2015=0` `\text{. Do}` `(1)/(2012)+(1)/(2013)-(1)/(3)-(1)/(4)\ne0`

    `<=>x=-2015`

    `\text{Vậy}` `S={-2015}`

     

    Bình luận

Viết một bình luận