giai phuong trình nghiệm nguyên :-5x+X^2+5y=2+xy 02/11/2021 Bởi Arianna giai phuong trình nghiệm nguyên :-5x+X^2+5y=2+xy
Đáp án: $\begin{array}{l} – 5x + {x^2} + 5y = 2 + xy\\ \Rightarrow – 5x + 5y + {x^2} – xy = 2\\ \Rightarrow – 5.\left( {x – y} \right) + x.\left( {x – y} \right) = 2\\ \Rightarrow \left( {x – y} \right).\left( {x – 5} \right) = 2 = 1.2\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x – y = 1\\x – 5 = 2\end{array} \right.\\\left\{ \begin{array}{l}x – y = – 1\\x – 5 = – 2\end{array} \right.\\\left\{ \begin{array}{l}x – y = 2\\x – 5 = 1\end{array} \right.\\\left\{ \begin{array}{l}x – y = – 2\\x – 5 = – 1\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = x – 1\\x = 7\end{array} \right.\\\left\{ \begin{array}{l}y = x + 1\\x = 3\end{array} \right.\\\left\{ \begin{array}{l}y = x – 2\\x = 6\end{array} \right.\\\left\{ \begin{array}{l}y = x + 2\\x = 4\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 7;y = 6\\x = 3;y = 4\\x = 6;y = 4\\x = 4;y = 6\end{array} \right.\\Vậy\,\left( {x;y} \right) = \left\{ {\left( {7;6} \right);\left( {3;4} \right);\left( {6;4} \right);\left( {4;6} \right)} \right\}\end{array}$ Bình luận
Đáp án: `(x;y) in {(3;4);(4;6);(6;4);(7;6)}` Giải thích các bước giải: `-5x+x^2+5y=2+xy` `=> -5x+x^2+5y-xy=2` `=> -5(x-y)+x(x-y)=2` `=> (x-5)(x-y)=2` `=> x-5;x-y in Ư(2)` Ta có bảng : $\begin{array}{|c|c|}\hline x-5&-2&-1&1&2\\\hline x-y&-1&-2&2&1\\\hline x&3&4&6&7\\\hline y&4&6&4&6\\\hline\end{array}$ Vậy `(x;y) in {(3;4);(4;6);(6;4);(7;6)}` Bình luận
Đáp án:
$\begin{array}{l}
– 5x + {x^2} + 5y = 2 + xy\\
\Rightarrow – 5x + 5y + {x^2} – xy = 2\\
\Rightarrow – 5.\left( {x – y} \right) + x.\left( {x – y} \right) = 2\\
\Rightarrow \left( {x – y} \right).\left( {x – 5} \right) = 2 = 1.2\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x – y = 1\\
x – 5 = 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = – 1\\
x – 5 = – 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = 2\\
x – 5 = 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = – 2\\
x – 5 = – 1
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
y = x – 1\\
x = 7
\end{array} \right.\\
\left\{ \begin{array}{l}
y = x + 1\\
x = 3
\end{array} \right.\\
\left\{ \begin{array}{l}
y = x – 2\\
x = 6
\end{array} \right.\\
\left\{ \begin{array}{l}
y = x + 2\\
x = 4
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 7;y = 6\\
x = 3;y = 4\\
x = 6;y = 4\\
x = 4;y = 6
\end{array} \right.\\
Vậy\,\left( {x;y} \right) = \left\{ {\left( {7;6} \right);\left( {3;4} \right);\left( {6;4} \right);\left( {4;6} \right)} \right\}
\end{array}$
Đáp án:
`(x;y) in {(3;4);(4;6);(6;4);(7;6)}`
Giải thích các bước giải:
`-5x+x^2+5y=2+xy`
`=> -5x+x^2+5y-xy=2`
`=> -5(x-y)+x(x-y)=2`
`=> (x-5)(x-y)=2`
`=> x-5;x-y in Ư(2)`
Ta có bảng :
$\begin{array}{|c|c|}\hline x-5&-2&-1&1&2\\\hline x-y&-1&-2&2&1\\\hline x&3&4&6&7\\\hline y&4&6&4&6\\\hline\end{array}$
Vậy `(x;y) in {(3;4);(4;6);(6;4);(7;6)}`