Giải phương trình sau: 15/4- 2,5 : |3/4x + 1/2| = 3 07/07/2021 Bởi Melody Giải phương trình sau: 15/4- 2,5 : |3/4x + 1/2| = 3
` 15/4- 2,5 : |3/4x + 1/2| = 3` `⇔2,5 : |3/4x + 1/2|=3/4` `⇔ |3/4x + 1/2|=(10)/3` `⇔`\(\left[ \begin{array}{l}3/4x + 1/2=(-10)/3\\3/4x + 1/2=(10)/3\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}3/4x =(-23)/6\\3/4x=(17)/6\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x =(-46)/6\\x=(34)/9\end{array} \right.\) Bình luận
Đáp án: `S={(34)/9;(-46)/9}` Giải thích các bước giải: `(15)/4 – 2,5 : |3/4x+1/2|=3` `⇔25/10 : |3/4x+1/2|=(15)/4 – 3` `⇔5/2 : |3/4x+1/2|=3/4` `⇔|3/4x+1/2|=5/2 : 3/4` `⇔|3/4x+1/2|=(10)/3` `⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x+\dfrac{1}{2}=\dfrac{10}{3}\\\dfrac{3}{4}x+\dfrac{1}{2}=\dfrac{-10}{3}\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x=\dfrac{10}{3}-\dfrac{1}{2}\\\dfrac{3}{4}x=\dfrac{-10}{3}-\dfrac{1}{2}\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x=\dfrac{17}{6}\\\dfrac{3}{4}x=\dfrac{-23}{6}\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=\dfrac{34}{9}\\x=\dfrac{-46}{9}\end{array} \right.\) Vậy `S={(34)/9;(-46)/9}` Bình luận
` 15/4- 2,5 : |3/4x + 1/2| = 3`
`⇔2,5 : |3/4x + 1/2|=3/4`
`⇔ |3/4x + 1/2|=(10)/3`
`⇔`\(\left[ \begin{array}{l}3/4x + 1/2=(-10)/3\\3/4x + 1/2=(10)/3\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}3/4x =(-23)/6\\3/4x=(17)/6\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x =(-46)/6\\x=(34)/9\end{array} \right.\)
Đáp án:
`S={(34)/9;(-46)/9}`
Giải thích các bước giải:
`(15)/4 – 2,5 : |3/4x+1/2|=3`
`⇔25/10 : |3/4x+1/2|=(15)/4 – 3`
`⇔5/2 : |3/4x+1/2|=3/4`
`⇔|3/4x+1/2|=5/2 : 3/4`
`⇔|3/4x+1/2|=(10)/3`
`⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x+\dfrac{1}{2}=\dfrac{10}{3}\\\dfrac{3}{4}x+\dfrac{1}{2}=\dfrac{-10}{3}\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x=\dfrac{10}{3}-\dfrac{1}{2}\\\dfrac{3}{4}x=\dfrac{-10}{3}-\dfrac{1}{2}\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}\dfrac{3}{4}x=\dfrac{17}{6}\\\dfrac{3}{4}x=\dfrac{-23}{6}\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=\dfrac{34}{9}\\x=\dfrac{-46}{9}\end{array} \right.\)
Vậy `S={(34)/9;(-46)/9}`