Giải phuơng trình sau
a) 4x-11=8x-24
b) 15-3x=2x+ 20
c) (x+6) ² – ( x-2)(X+2)=0
d) (4x-5)(4x+1)-(4x-3)^2= 0
e) (2x-5)(3x+1)-6(x-2)(x+2) = 0
f) (x-3)(x+3)- (x-1) ²=0
g) 4x-1/9 – 2x/3 = 1/6 – 2-3x/2
h) 4-3x/6 – 2x =3/4 – 1+5x/3
i) 2/3.( 1-2x) = 3/4-5/6.( 2x+3)
i) 4/9(2x+3) -1/2= x-5/6 .( 4x-1)
Nhanh nha anh chị,20 điểm rồi ạ
a) <=> 4x-8x= -24+11
<=> -4x = -13
<=> x = (-13): (-4 )
vậy S = {13 phần 4}
b) <=> -3x-2x = 20+ (-15)
<=> -5x = 5
<=> x= 5: (-5)
vậy S= {-1}
c) <=> (x+6)^2 – (x+2)^2=0
<=> x+6 =0 => x= -6
<=> x-2 =0 => x= 2
vậy S= { -6;2}
f) <=>(x-3)^2 – (x-1)^2 =0
<=> x-3 =0 => x=3
<=> x+1 =0 => x=-1
vậy S = {3;-1}
Còn mấy câu nx ko bt làm
sorry 🙂
a) 4x-11=8x-24
⇔ 4x-8x=-24+11
⇔ -4x=-13
⇔ x=$\frac{13}{4}$
b) 15-3x=2x+ 20
⇔ -3x-2x=20-15
⇔ -5x=5
⇔ x=-1
c) (x+6) ² – ( x-2)(X+2)=0
⇔ x² + 12x + 36 – x² + 4=0
⇔ 12x+40=0
⇔ 12x=40
⇔ x=$\frac{40}{12}$ =$\frac{10}{3}$
d) (4x-5)(4x+1)-(4x-3)^2= 0
⇔ 16x² + 4x – 20x – 5 – 16x² + 24x -9=0
⇔ 8x – 14 = 0
⇔ 8x = 14
⇔ x = $\frac{7}{4}$
e) (2x-5)(3x+1)-6(x-2)(x+2) = 0
⇔ 6x² + 2x – 15x – 5 – 6x² + 24 = 0
⇔ -13x +19 = 0
⇔ -13x = -19
⇔ x = $\frac{13}{19}$
f) (x-3)(x+3)- (x-1) ²=0
⇔ x² – 9 – x² + 2x – 1 = 0
⇔ 2x – 10 = 0
⇔ 2x = 10
⇔ x = 5
g) 4x – $\frac{1}{9}$ – $\frac{2x}{3}$ = $\frac{1}{6}$ – $\frac{3x}{2}$
⇔ 4x – $\frac{2x}{3}$ + $\frac{3x}{2}$ = $\frac{1}{6}$ + $\frac{1}{9}$
⇔ $\frac{24x-4x+9x}{6}$ = $\frac{3+2}{18}$
⇔ $\frac{29x}{6}$ = $\frac{5}{18}$
⇔ $\frac{87x}{18}$ = $\frac{5}{18}$
⇔ 87x = 5
⇔ x = $\frac{5}{87}$
h)4 – $\frac{3x}{6}$ – 2x = $\frac{3}{4}$ – 1 + $\frac{5x}{3}$
⇔ $\frac{-3x}{6}$ – 2x – $\frac{5x}{3}$ = $\frac{3}{4}$ – 1 – 4
⇔ $\frac{-3x – 12x -10x}{6}$ = $\frac{3 – 4 – 16}{4}$
⇔ $\frac{-25x}{6}$ = $\frac{-17}{4}$
⇔ $\frac{-50x}{12}$ = $\frac{-51}{12}$4x
⇔ 50x = 51
⇔ x = 51/50
i) 2/3.( 1-2x) = 3/4-5/6.( 2x+3)
⇔ 2/3 – 4x/3 = 3/4 – 5x/3 – 5/2
⇔ -4x/3 + 5x/3 = 3/4 – 5/2 – 2/3
⇔ x/3 = -29/12
⇔ 4x/12 = -29/12
⇔ 4x = -29
⇔ x = -29/4
i) 4/9(2x+3) – 1/2 = x – 5/6(4x-1)
⇔ 8x/9 + 4/3 – 1/2 = x – 10x/3 + 5/6
⇔ 8x/9 + 10x/3 – x = 5/6 -4/3 + 1/2
⇔ 8x+30x-9x/9 = 0
⇔ 29x = 0
⇔ x=0
Xin ctlhn ạ!