Giải phương trình sau : $\sqrt{\frac{x^3}{3}-2}+\frac{1}{2}=\sqrt[3]{3x^2-3x+\frac{27}{4}}$

Giải phương trình sau : $\sqrt{\frac{x^3}{3}-2}+\frac{1}{2}=\sqrt[3]{3x^2-3x+\frac{27}{4}}$

0 bình luận về “Giải phương trình sau : $\sqrt{\frac{x^3}{3}-2}+\frac{1}{2}=\sqrt[3]{3x^2-3x+\frac{27}{4}}$”

  1. Đáp án:

     

    Giải thích các bước giải:

    ĐKXĐ $ x ≥ \sqrt[3]{6} > \dfrac{1}{2} > 0$

    $ PT ⇔ \sqrt{\dfrac{x³}{3} – 2 } – (x – \dfrac{1}{2}) + (x – \sqrt[3]{3x² – 3x + \dfrac{27}{4} }) = 0$ 

    $ ⇔ \dfrac{(\dfrac{x³}{3} – 2) –  (x – \dfrac{1}{2})²}{\sqrt{\dfrac{x³}{3} – 2 } + (x – \dfrac{1}{2})} + \dfrac{x³ – (3x² – 3x + \dfrac{27}{4})}{x² + x\sqrt[3]{3x² – 3x + \dfrac{27}{4}} + \sqrt[3]{(3x² – 3x + \dfrac{27}{4})²}} = 0$ 

    $ ⇔ \dfrac{\dfrac{1}{3}(x³ – 3x² + 3x – \dfrac{27}{4}) }{\sqrt{\dfrac{x³}{3} – 2 } + (x – \dfrac{1}{2})} + \dfrac{x³ – 3x² + 3x – \dfrac{27}{4}}{x² + x\sqrt[3]{3x² – 3x + \dfrac{27}{4}} + \sqrt[3]{(3x² – 3x + \dfrac{27}{4})²}} = 0$ 

    $ ⇔ (x³ – 3x² + 3x – \dfrac{27}{4})[\dfrac{1}{3\sqrt{\dfrac{x³}{3} – 2 } + 3(x – \dfrac{1}{2})} + \dfrac{1}{x² – x\sqrt[3]{3x² – 3x + \dfrac{27}{4}} + \sqrt[3]{(3x² – 3x + \dfrac{27}{4})²}}] = 0$ 

    $ ⇔ x³ – 3x² + 3x – \dfrac{27}{4} = 0$

    $ ⇔ (x – 1)³ = \dfrac{23}{4}$

    $ ⇔ x – 1 = \sqrt[3]{\dfrac{23}{4}}$ 

    $ ⇔ x = 1 + \sqrt[3]{\dfrac{23}{4}}$ là nghiệm duy nhất

    Bình luận

Viết một bình luận