Giai pt 1)x+1/2030+x+2/2019=x+3/3018+x+4/2017 2)59-x/41+57-x/43+55-x/45+53-x/47=-4 3)x-3/x+3-x+3/x-3=4x^2/9-x^2 02/11/2021 Bởi aihong Giai pt 1)x+1/2030+x+2/2019=x+3/3018+x+4/2017 2)59-x/41+57-x/43+55-x/45+53-x/47=-4 3)x-3/x+3-x+3/x-3=4x^2/9-x^2
Đáp án: Giải thích các bước giải: 1 ) ( x+1 / 2020 +1 ) + ( x+2 /2019 +1 ) = ( x+3 /2018 +1 ) + ( x+4 /2017 +1 ) <=> x+2021 /2020 + x+2021 / 2019 – x+2021 /2018 – x+2021 /2017 =0 <=> (x+2021) +1/2020 +1/2019 – 1/2018 – 1/2017 =0 <=> x+2021=0 <=> x= -2021 2) <=> x+100/ 41 + x+100/43 + x+100/45 + x+100/47 =0 <=> (x+100) + 1/41 + 1/43 + 1/45+ 1/47 =0 <=> x+100 =0 <=> x = -100 Bình luận
`1)(x+1)/2020+(x+2)/2019=(x+3)/2018+(x+4)/2017` `⇔(x+1)/2020+1+(x+2)/2019+1=(x+3)/2018+1+(x+4)/2017+1` `⇔(x+1+2020)/2020+(x+2+2019)/2019=(x+3+2018)/2018+(x+4+2017)/2017` `⇔(x+2021)/2020+(x+2021)/2019=(x+2021)/2018+(x+2021)/2017` `⇔(x+2021)(1/2020+1/2019-1/2018-1/20017)=0` `⇔x+2021=0` `⇔x=-2021` `⇒` Vậy `S={-2021}` 2)`(59-x)/41+(57-x)/43+(55-x)/45+(53-x)/47=0` `⇔(59-x)/41+1+(57-x)/43+1+(55-x)/45+1++(53-x)/47+1=0` `⇔(59-x+41)/41+(57-x+43)/43+(55-x+45)/45+(53-x+47)/47=0` `⇔(100-x)/41+(100-x)/43+(100-x)/45+(100-x)/47=0` `⇔(100-x)(1/41+1/43+1/45+1/47)=0` `⇔100-x=0` `⇔x=-100` `⇒`Vậy `S={-100}` `3)(x-3)/(x+3)-(x+3)/(x-3)=(4x^2)/(9-x^2)` `⇔(x-3)/(x+3)-(x+3)/(x-3)=(-4x^2)/(x^2-3^2)` `ĐKXĐ:(x+3)(x-3)\ne0` $x\neq±3$ `⇔(x-3)^2/((x+3)(x-3)) – (x+3)^2/((x+3)(x-3))=(-4x^2)/((x+3)(x-3))` `⇔x^2-6x+9-(x^2+6x+9)=-4x^2` `⇔x^2-6x+9-x^2-6x-9+4x^2=0` `⇔-12x+4x^2=0` `⇔4x(-3+x)=0` \(\left[ \begin{array}{l}4x=0\\-3+x=0\end{array} \right.\) `⇒x=0(nhận)` `⇒x=3(loại)` `⇒` Vậy `S={3}` Bình luận
Đáp án:
Giải thích các bước giải:
1 ) ( x+1 / 2020 +1 ) + ( x+2 /2019 +1 ) = ( x+3 /2018 +1 ) + ( x+4 /2017 +1 )
<=> x+2021 /2020 + x+2021 / 2019 – x+2021 /2018 – x+2021 /2017 =0
<=> (x+2021) +1/2020 +1/2019 – 1/2018 – 1/2017 =0
<=> x+2021=0
<=> x= -2021
2) <=> x+100/ 41 + x+100/43 + x+100/45 + x+100/47 =0
<=> (x+100) + 1/41 + 1/43 + 1/45+ 1/47 =0
<=> x+100 =0
<=> x = -100
`1)(x+1)/2020+(x+2)/2019=(x+3)/2018+(x+4)/2017`
`⇔(x+1)/2020+1+(x+2)/2019+1=(x+3)/2018+1+(x+4)/2017+1`
`⇔(x+1+2020)/2020+(x+2+2019)/2019=(x+3+2018)/2018+(x+4+2017)/2017`
`⇔(x+2021)/2020+(x+2021)/2019=(x+2021)/2018+(x+2021)/2017`
`⇔(x+2021)(1/2020+1/2019-1/2018-1/20017)=0`
`⇔x+2021=0`
`⇔x=-2021`
`⇒` Vậy `S={-2021}`
2)`(59-x)/41+(57-x)/43+(55-x)/45+(53-x)/47=0`
`⇔(59-x)/41+1+(57-x)/43+1+(55-x)/45+1++(53-x)/47+1=0`
`⇔(59-x+41)/41+(57-x+43)/43+(55-x+45)/45+(53-x+47)/47=0`
`⇔(100-x)/41+(100-x)/43+(100-x)/45+(100-x)/47=0`
`⇔(100-x)(1/41+1/43+1/45+1/47)=0`
`⇔100-x=0`
`⇔x=-100`
`⇒`Vậy `S={-100}`
`3)(x-3)/(x+3)-(x+3)/(x-3)=(4x^2)/(9-x^2)`
`⇔(x-3)/(x+3)-(x+3)/(x-3)=(-4x^2)/(x^2-3^2)`
`ĐKXĐ:(x+3)(x-3)\ne0`
$x\neq±3$
`⇔(x-3)^2/((x+3)(x-3)) – (x+3)^2/((x+3)(x-3))=(-4x^2)/((x+3)(x-3))`
`⇔x^2-6x+9-(x^2+6x+9)=-4x^2`
`⇔x^2-6x+9-x^2-6x-9+4x^2=0`
`⇔-12x+4x^2=0`
`⇔4x(-3+x)=0`
\(\left[ \begin{array}{l}4x=0\\-3+x=0\end{array} \right.\)
`⇒x=0(nhận)`
`⇒x=3(loại)`
`⇒` Vậy `S={3}`