giải pt (x – 1)(2x² – 10) = 0 (2x – 7)² – 6(2x – 7)(x – 3) = 0 (5x + 3)(x² + 4) = 0

giải pt (x – 1)(2x² – 10) = 0
(2x – 7)² – 6(2x – 7)(x – 3) = 0
(5x + 3)(x² + 4) = 0

0 bình luận về “giải pt (x – 1)(2x² – 10) = 0 (2x – 7)² – 6(2x – 7)(x – 3) = 0 (5x + 3)(x² + 4) = 0”

  1. a, (x – 1)(2x² – 10) = 0

    ⇔\(\left[ \begin{array}{l}x – 1=0\\2x² – 10=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x =1\\x² =5\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x =1\\x=+- √5\end{array} \right.\) 

    KL:..

    b, (2x – 7)² – 6(2x – 7)(x – 3) = 0

    ⇔(2x – 7).[2x – 7-6(x-3)]=0

    ⇔\(\left[ \begin{array}{l}2x – 7=0\\2x – 7-6x+18=0end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=7/2\\11=4x\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x =7/2\\x=11/4\end{array} \right.\) 

    Bình luận
  2.     (x – 1)(2x² – 10) = 0

    ⇔ x – 1 = 0 hoặc 2x² – 10 = 0

    ⇔ x = 1 hoặc 2x² = 10

    ⇔ x = 1 hoặc x² = 5

    ⇔ x = 1 hoặc x = √5

    Vậy S = { 1 ; √5 }.

        (2x – 7)² – 6(2x – 7)(x – 3) = 0

    ⇔ (2x – 7)² = 6(2x – 7)(x – 3)

    ⇔ (2x – 7)² = (2x – 7)(6x – 18)

    ⇔ (2x – 7)² – (2x – 7)(6x – 18) = 0

    ⇔ (2x – 7)[(2x – 7) – (6x – 18)] = 0

    ⇔ (2x – 7)(2x – 7 – 6x + 18) = 0

    ⇔ (2x – 7)(-4x + 11) = 0
    ⇔ 2x -7 = 0 hoặc -4x + 11 = 0
    ⇔ 2x = 7 hoặc -4x = -11

    ⇔ x = 7/2 hoặc x = 11/4

    Vậy S = { 7/2 ; 11/4 }.

        (5x + 3)(x² + 4) = 0

    ⇔ 5x + 3 = 0 hoặc x² + 4 = 0

    ⇔ 5x = -3 hoặc x² = -4

    ⇔ x = -3/5 hoặc x = -√4

    Vậy S = { -3/5 ; -√4 }

    Bình luận

Viết một bình luận