giải pt: `(x-1)/2018+(x-2)/2017+(x-3)/2016+…+(x-2018)/1=2018` 25/10/2021 Bởi Skylar giải pt: `(x-1)/2018+(x-2)/2017+(x-3)/2016+…+(x-2018)/1=2018`
x-1/2018 + x-2/2017 + x-3/2016 + … + x-2018/1 = 2018 (x-1-2018/2018) + (x-2-2017/2017) + (x-3-2016/2016) + … + (x-2018-1/1) = 0 x-2019/2018 + x-2019/2017 + x-2019/2016 + … + x-2019/1 = 0 (x-2019)(1/2018 + 1/2017 + 1/2016 + … + 1/1)=0 => x-2019=0 => x=2019 Vậy x=2019. Bình luận
x-1/2018 + x-2/2017 + x-3/2016 + … + x-2018/1 = 2018
(x-1-2018/2018) + (x-2-2017/2017) + (x-3-2016/2016) + … + (x-2018-1/1) = 0
x-2019/2018 + x-2019/2017 + x-2019/2016 + … + x-2019/1 = 0
(x-2019)(1/2018 + 1/2017 + 1/2016 + … + 1/1)=0
=> x-2019=0
=> x=2019
Vậy x=2019.