giải pt: 12/` 1+tanx=2\sqrt{2}sin(x+\frac{ π}{4}) ` 10/07/2021 Bởi Alaia giải pt: 12/` 1+tanx=2\sqrt{2}sin(x+\frac{ π}{4}) `
Đáp án: $1+tanx = 2\sqrt{2}sin(x+\frac{\pi}{4})$ $( ĐK : x\neq \frac{\pi}{2} + k\pi) $ $⇔ 1 + \frac{sinx}{cosx} = 2(sinx + cosx )$ $⇔ \frac{cosx+sinx}{cosx} – 2(sinx + cosx) = 0$ $⇔ cosx + sinx – 2cosx(sinx + cosx) = 0 $ $⇔ (sinx + cosx)(1 – 2cosx) = 0$ $⇔$ \(\left[ \begin{array}{l}sinx+cosx=0\\1-2cosx=0\end{array} \right.\) $⇔$\(\left[ \begin{array}{l}\sqrt{2} sin(x+\frac{\pi}{4})=0\\cosx=\frac{1}{2}\end{array} \right.\) $⇔$ \(\left[ \begin{array}{l}x=-\frac{\pi}{4}+k\pi\\x=±\frac{\pi}{3}+k2\pi\end{array} \right.\) $(TM)$ Bình luận
Đáp án:
$1+tanx = 2\sqrt{2}sin(x+\frac{\pi}{4})$ $( ĐK : x\neq \frac{\pi}{2} + k\pi) $
$⇔ 1 + \frac{sinx}{cosx} = 2(sinx + cosx )$
$⇔ \frac{cosx+sinx}{cosx} – 2(sinx + cosx) = 0$
$⇔ cosx + sinx – 2cosx(sinx + cosx) = 0 $
$⇔ (sinx + cosx)(1 – 2cosx) = 0$
$⇔$ \(\left[ \begin{array}{l}sinx+cosx=0\\1-2cosx=0\end{array} \right.\)
$⇔$\(\left[ \begin{array}{l}\sqrt{2} sin(x+\frac{\pi}{4})=0\\cosx=\frac{1}{2}\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=-\frac{\pi}{4}+k\pi\\x=±\frac{\pi}{3}+k2\pi\end{array} \right.\) $(TM)$