giải pt: 16/ `4cos^2x +3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0`

giải pt:
16/ `4cos^2x +3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0`

0 bình luận về “giải pt: 16/ `4cos^2x +3tan^2x-4\sqrt{3}cosx+2\sqrt{3}tanx+4=0`”

  1. Đáp án:$x = – \dfrac{π}{6} + k2π (k ∈ Z)$

     

    Giải thích các bước giải:

    ĐKXĐ $ : cosx \neq0$ 

    $ PT ⇔ (2cosx – \sqrt{3})² + (\sqrt{3}tanx + 1)² = 0$ 

    $ ⇔ 2cosx – \sqrt{3} = \sqrt{3}tanx + 1 = 0$

    @ $ cosx = \dfrac{\sqrt{3}}{2} ⇔ x = ± \dfrac{π}{6} + k2π (1)$

    @ $ tanx = – \dfrac{\sqrt{3}}{3} ⇔ x = – \dfrac{π}{6} + kπ (2)$

    Kết hợp $(1); (2) : x = – \dfrac{π}{6} + k2π $

     

    Bình luận
  2. Đáp án:

     $x = -\dfrac{\pi}{6} + k2\pi \quad (k\in\Bbb Z)$

    Giải thích các bước giải:

    $4\cos^2x +3\tan^2x-4\sqrt{3}\cos x+2\sqrt{3}\tan x+4=0$ $(*)$

    $ĐKXĐ: \, x \ne \dfrac{\pi}{2} + n\pi\quad (n\in \Bbb Z)$

    $(*) \Leftrightarrow \left(4\cos^2x – 2.4\cos x.\sqrt3 + 3\right) + \left(3\tan^2x + 2.\sqrt3\tan x+ 1\right) = 0$

    $\Leftrightarrow (2\cos x – \sqrt3)^2 + (\sqrt3\tan x + 1)^2 = 0$

    $\Leftrightarrow \begin{cases}2\cos x – \sqrt3 = 0\\\sqrt3\tan x + 1 = 0\end{cases}$

    $\Leftrightarrow \begin{cases}\cos x = \dfrac{\sqrt3}{2}\\\tan x = -\dfrac{1}{\sqrt3}\end{cases}$

    $\Leftrightarrow \begin{cases}x = \pm \dfrac{\pi}{6} + k2\pi\\x = -\dfrac{\pi}{6} + k\pi\end{cases}$

    $\Leftrightarrow x = -\dfrac{\pi}{6} + k2\pi \quad (k\in\Bbb Z)$

    Bình luận

Viết một bình luận