giải pt (x^2 + 2x – 5)^2 = (x^2 – x + 5)^2 x(x + l)(x + 2)(x + 3) = 8; 31/07/2021 Bởi Natalia giải pt (x^2 + 2x – 5)^2 = (x^2 – x + 5)^2 x(x + l)(x + 2)(x + 3) = 8;
Giải thích các bước giải: a/ $(x^2+2x-5)^2=(x^2-x+5)^2$ $⇔ (x^2+2x-5)^2-(x^2-x+5)^2=0$ $⇔ (x^2+2x-5-x^2+x-5)(x^2+2x-5+x^2-x+5)=0$ $⇔ (3x-10)(2x^2+x)=0$ $⇔ (3x-10)x(2x+1)=0$ $⇔ \left[ \begin{array}{l}3x-10=0\\x=0\\2x+1=0\end{array} \right.$ $⇔ \left[ \begin{array}{l}x=\dfrac{10}{3}\\x=0\\x=-\dfrac{1}{2}\end{array} \right.$ $\text{Vậy pt có nghiệm: $x=\dfrac{10}{3}$; $x=0$; $x=-\dfrac{1}{2}$}$ b/ $x(x+1)(x+2)(x+3)=8$ $⇔ x(x+3)(x+1)(x+2)=8$ $⇔ (x^2+3x)(x^2+3x+2)=8$ $\text{Đặt: $t=x^2+3x$}$ $⇒ t(t+2)=8$ $⇔ t^2+2t-8=0$ $⇔ t^2+4t-2t-8=0$ $⇔ (t+4)(t-2)=0$ $⇔ \left[ \begin{array}{l}t=-4\\t=2\end{array} \right.$ $⇔ \left[ \begin{array}{l}x^2+3x+4=0 \text{(pt vô nghiệm)}\\x^2+3x-2=0\end{array} \right.$ $⇒ x^2+3x-2=0$ $⇔ 4x^2+12x-8=0$ $⇔ 4x^2+12x+9-17=0$ $⇔ (2x+3)^2-17=0$ $⇔ (2x+3+\sqrt{17})(2x+3-\sqrt{17})=0$ $⇔ \left[ \begin{array}{l}x=\dfrac{-3-\sqrt{17}}{2}\\x=\dfrac{\sqrt{17}-3}{2}\end{array} \right.$ $\text{Vậy pt có nghiệm: $x=\dfrac{-3-\sqrt{17}}{2}$; $x=\dfrac{\sqrt{17}-3}{2}$}$ Chúc bạn học tốt !!! Bình luận
Giải thích các bước giải:
a/ $(x^2+2x-5)^2=(x^2-x+5)^2$
$⇔ (x^2+2x-5)^2-(x^2-x+5)^2=0$
$⇔ (x^2+2x-5-x^2+x-5)(x^2+2x-5+x^2-x+5)=0$
$⇔ (3x-10)(2x^2+x)=0$
$⇔ (3x-10)x(2x+1)=0$
$⇔ \left[ \begin{array}{l}3x-10=0\\x=0\\2x+1=0\end{array} \right.$
$⇔ \left[ \begin{array}{l}x=\dfrac{10}{3}\\x=0\\x=-\dfrac{1}{2}\end{array} \right.$
$\text{Vậy pt có nghiệm: $x=\dfrac{10}{3}$; $x=0$; $x=-\dfrac{1}{2}$}$
b/ $x(x+1)(x+2)(x+3)=8$
$⇔ x(x+3)(x+1)(x+2)=8$
$⇔ (x^2+3x)(x^2+3x+2)=8$
$\text{Đặt: $t=x^2+3x$}$
$⇒ t(t+2)=8$
$⇔ t^2+2t-8=0$
$⇔ t^2+4t-2t-8=0$
$⇔ (t+4)(t-2)=0$
$⇔ \left[ \begin{array}{l}t=-4\\t=2\end{array} \right.$
$⇔ \left[ \begin{array}{l}x^2+3x+4=0 \text{(pt vô nghiệm)}\\x^2+3x-2=0\end{array} \right.$
$⇒ x^2+3x-2=0$
$⇔ 4x^2+12x-8=0$
$⇔ 4x^2+12x+9-17=0$
$⇔ (2x+3)^2-17=0$
$⇔ (2x+3+\sqrt{17})(2x+3-\sqrt{17})=0$
$⇔ \left[ \begin{array}{l}x=\dfrac{-3-\sqrt{17}}{2}\\x=\dfrac{\sqrt{17}-3}{2}\end{array} \right.$
$\text{Vậy pt có nghiệm: $x=\dfrac{-3-\sqrt{17}}{2}$; $x=\dfrac{\sqrt{17}-3}{2}$}$
Chúc bạn học tốt !!!