giải pt: x/2(x-3) + x/2x+2 = 2x/(x+1)(x-3)

giải pt: x/2(x-3) + x/2x+2 = 2x/(x+1)(x-3)

0 bình luận về “giải pt: x/2(x-3) + x/2x+2 = 2x/(x+1)(x-3)”

  1. Đáp án:

     

    Giải thích các bước giải:

    $\dfrac{x}{2\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)+\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$

    $x\left(x+1\right)+x\left(x-3\right)=4x$

    *$\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)$

    $=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2x+2}$

    $=x\left(x-3\right)$

    *$=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2\left(x-3\right)}$

    $=\dfrac{x\left(x-3\right)\left(x+1\right)}{x-3}$

    $=x\left(x+1\right)$

    *$\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$

    $=\dfrac{2x\cdot \:2\left(x-3\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)}$

    $=\dfrac{2x\cdot \:2\left(x+1\right)}{x+1}$

    $=2x\cdot \:2$

    $=4x$

    —————————————-

    $x\left(x+1\right)+x\left(x-3\right)=4x$

    $2x^2-2x-4x=4x-4x$

    $2x^2-6x=0$

    `=>x in {0;3}`

    Vậy `x=0` thỏa mãn đề bài.

    Bình luận
  2. $\frac{x}{2(x-3)}$+$\frac{x}{2x+2}$ =$\frac{x}{(x+1)(x-3)}$ 

    ⇔$\frac{x}{2(x-3)}$+$\frac{x}{2(x+1)}$ =$\frac{x}{(x+1)(x-3)}$ 

    $MTC: 2(x+1)(x-3)$

    $ĐKXĐ:$ x$\neq$-1 hoặc x$\neq$3

    ⇔$\frac{x(x+1)}{2(x+1)(x-3)}$+$\frac{x(x-3)}{2(x+1)(x-3)}$ =$\frac{2x}{2(x+1)(x-3)}$ 

    $⇒x²+x+x²-3x=4x$

    $⇔x²+x+x²-3x-4x=0$

    $⇔-6x+2x²=0$

    $⇔2x(x-3)=0$

    ⇒$2x=0  $             hoặc        $ x-3=0$

    ⇔$x=0 (nhận)$     hoặc          $ x=3(loại)$

    Vậy S={$0$}

     

    Bình luận

Viết một bình luận