giải pt: x/2(x-3) + x/2x+2 = 2x/(x+1)(x-3) 07/10/2021 Bởi Hadley giải pt: x/2(x-3) + x/2x+2 = 2x/(x+1)(x-3)
Đáp án: Giải thích các bước giải: $\dfrac{x}{2\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)+\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$ $x\left(x+1\right)+x\left(x-3\right)=4x$ *$\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)$ $=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2x+2}$ $=x\left(x-3\right)$ *$=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2\left(x-3\right)}$ $=\dfrac{x\left(x-3\right)\left(x+1\right)}{x-3}$ $=x\left(x+1\right)$ *$\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$ $=\dfrac{2x\cdot \:2\left(x-3\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)}$ $=\dfrac{2x\cdot \:2\left(x+1\right)}{x+1}$ $=2x\cdot \:2$ $=4x$ —————————————- $x\left(x+1\right)+x\left(x-3\right)=4x$ $2x^2-2x-4x=4x-4x$ $2x^2-6x=0$ `=>x in {0;3}` Vậy `x=0` thỏa mãn đề bài. Bình luận
$\frac{x}{2(x-3)}$+$\frac{x}{2x+2}$ =$\frac{x}{(x+1)(x-3)}$ ⇔$\frac{x}{2(x-3)}$+$\frac{x}{2(x+1)}$ =$\frac{x}{(x+1)(x-3)}$ $MTC: 2(x+1)(x-3)$ $ĐKXĐ:$ x$\neq$-1 hoặc x$\neq$3 ⇔$\frac{x(x+1)}{2(x+1)(x-3)}$+$\frac{x(x-3)}{2(x+1)(x-3)}$ =$\frac{2x}{2(x+1)(x-3)}$ $⇒x²+x+x²-3x=4x$ $⇔x²+x+x²-3x-4x=0$ $⇔-6x+2x²=0$ $⇔2x(x-3)=0$ ⇒$2x=0 $ hoặc $ x-3=0$ ⇔$x=0 (nhận)$ hoặc $ x=3(loại)$ Vậy S={$0$} Bình luận
Đáp án:
Giải thích các bước giải:
$\dfrac{x}{2\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)+\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$
$x\left(x+1\right)+x\left(x-3\right)=4x$
*$\dfrac{x}{2x+2}\cdot \:2\left(x-3\right)\left(x+1\right)$
$=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2x+2}$
$=x\left(x-3\right)$
*$=\dfrac{x\cdot \:2\left(x-3\right)\left(x+1\right)}{2\left(x-3\right)}$
$=\dfrac{x\left(x-3\right)\left(x+1\right)}{x-3}$
$=x\left(x+1\right)$
*$\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\cdot \:2\left(x-3\right)\left(x+1\right)$
$=\dfrac{2x\cdot \:2\left(x-3\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)}$
$=\dfrac{2x\cdot \:2\left(x+1\right)}{x+1}$
$=2x\cdot \:2$
$=4x$
—————————————-
$x\left(x+1\right)+x\left(x-3\right)=4x$
$2x^2-2x-4x=4x-4x$
$2x^2-6x=0$
`=>x in {0;3}`
Vậy `x=0` thỏa mãn đề bài.
$\frac{x}{2(x-3)}$+$\frac{x}{2x+2}$ =$\frac{x}{(x+1)(x-3)}$
⇔$\frac{x}{2(x-3)}$+$\frac{x}{2(x+1)}$ =$\frac{x}{(x+1)(x-3)}$
$MTC: 2(x+1)(x-3)$
$ĐKXĐ:$ x$\neq$-1 hoặc x$\neq$3
⇔$\frac{x(x+1)}{2(x+1)(x-3)}$+$\frac{x(x-3)}{2(x+1)(x-3)}$ =$\frac{2x}{2(x+1)(x-3)}$
$⇒x²+x+x²-3x=4x$
$⇔x²+x+x²-3x-4x=0$
$⇔-6x+2x²=0$
$⇔2x(x-3)=0$
⇒$2x=0 $ hoặc $ x-3=0$
⇔$x=0 (nhận)$ hoặc $ x=3(loại)$
Vậy S={$0$}