Giải pt ((x+3)/(x-5))^2+6((x-3)/(x+5))^2=7((x^2-9)/(x^2-25)) 19/07/2021 Bởi Hadley Giải pt ((x+3)/(x-5))^2+6((x-3)/(x+5))^2=7((x^2-9)/(x^2-25))
Đáp án: \[\left[ \begin{array}{l}x = 0\\x = \frac{{28 \pm \sqrt {409} }}{5}\end{array} \right.\] Giải thích các bước giải: Ta có: \(\begin{array}{l}{\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} + 6.{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 7.\frac{{{x^2} – 9}}{{{x^2} – 25}}\\ \Leftrightarrow {\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} – 7.\frac{{\left( {x – 3} \right)\left( {x + 3} \right)}}{{\left( {x – 5} \right)\left( {x + 5} \right)}} + 6.{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 0\\ \Leftrightarrow {\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} – 7.\frac{{x + 3}}{{x – 5}}.\frac{{x – 3}}{{x + 5}} + 6{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 0\\ \Leftrightarrow \left( {\frac{{x + 3}}{{x – 5}} – \frac{{x – 3}}{{x + 5}}} \right)\left( {\frac{{x + 3}}{{x – 5}} – 6.\frac{{x – 3}}{{x + 5}}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\frac{{x + 3}}{{x – 5}} = \frac{{x – 3}}{{x + 5}}\\\frac{{x + 3}}{{x – 5}} = 6.\frac{{x – 3}}{{x + 5}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} + 8x + 15 = {x^2} – 8x + 15\\{x^2} + 8x + 15 = 6.\left( {{x^2} – 8x + 15} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\5{x^2} – 56x + 75 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{28 \pm \sqrt {409} }}{5}\end{array} \right.\end{array}\) Bình luận
Đáp án:
\[\left[ \begin{array}{l}
x = 0\\
x = \frac{{28 \pm \sqrt {409} }}{5}
\end{array} \right.\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
{\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} + 6.{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 7.\frac{{{x^2} – 9}}{{{x^2} – 25}}\\
\Leftrightarrow {\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} – 7.\frac{{\left( {x – 3} \right)\left( {x + 3} \right)}}{{\left( {x – 5} \right)\left( {x + 5} \right)}} + 6.{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 0\\
\Leftrightarrow {\left( {\frac{{x + 3}}{{x – 5}}} \right)^2} – 7.\frac{{x + 3}}{{x – 5}}.\frac{{x – 3}}{{x + 5}} + 6{\left( {\frac{{x – 3}}{{x + 5}}} \right)^2} = 0\\
\Leftrightarrow \left( {\frac{{x + 3}}{{x – 5}} – \frac{{x – 3}}{{x + 5}}} \right)\left( {\frac{{x + 3}}{{x – 5}} – 6.\frac{{x – 3}}{{x + 5}}} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{x + 3}}{{x – 5}} = \frac{{x – 3}}{{x + 5}}\\
\frac{{x + 3}}{{x – 5}} = 6.\frac{{x – 3}}{{x + 5}}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} + 8x + 15 = {x^2} – 8x + 15\\
{x^2} + 8x + 15 = 6.\left( {{x^2} – 8x + 15} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
5{x^2} – 56x + 75 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{{28 \pm \sqrt {409} }}{5}
\end{array} \right.
\end{array}\)