Giải PT: 4cos(2x)-2cos(4x)-cos(8x)-1=0 TÌm min: y=4sin(x)-4cos^2(x) 30/07/2021 Bởi Eloise Giải PT: 4cos(2x)-2cos(4x)-cos(8x)-1=0 TÌm min: y=4sin(x)-4cos^2(x)
Đáp án: $\begin{array}{l}1)\\4\cos 2x – 2\cos 4x – \cos 8x – 1 = 0\\ \Rightarrow 4\cos 2x – 2\cos 4x – \left( {2{{\cos }^2}4x – 1} \right) – 1 = 0\\ \Rightarrow 4\cos 2x – 2\cos 4x – 2{\cos ^2}4x = 0\\ \Rightarrow 2\cos 2x – \cos 4x – {\cos ^2}4x = 0\\ \Rightarrow 2\cos 2x – \cos 4x\left( {1 + \cos 4x} \right) = 0\\ \Rightarrow 2\cos 2x – cos4x.2co{s^2}2x = 0\\ \Rightarrow 2\cos 2x\left( {1 – \cos 4x.\cos 2x} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}\cos 2x = 0\\1 – \left( {2{{\cos }^2}2x – 1} \right).\cos 2x = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} + k\pi \\ – 2{\cos ^3}2x + \cos 2x + 1 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\\cos 2x = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\2x = k2\pi \end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\x = k\pi \end{array} \right.\\2)\\y = 4\sin x – 4{\cos ^2}x\\ = 4\sin x – 4\left( {1 – {{\sin }^2}x} \right)\\ = 4{\sin ^2}x + 4\sin x – 4\\ = {\left( {2\sin x + 1} \right)^2} – 5 \ge – 5\forall x\\Vậy\,GTNN\,y = – 5\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
1)\\
4\cos 2x – 2\cos 4x – \cos 8x – 1 = 0\\
\Rightarrow 4\cos 2x – 2\cos 4x – \left( {2{{\cos }^2}4x – 1} \right) – 1 = 0\\
\Rightarrow 4\cos 2x – 2\cos 4x – 2{\cos ^2}4x = 0\\
\Rightarrow 2\cos 2x – \cos 4x – {\cos ^2}4x = 0\\
\Rightarrow 2\cos 2x – \cos 4x\left( {1 + \cos 4x} \right) = 0\\
\Rightarrow 2\cos 2x – cos4x.2co{s^2}2x = 0\\
\Rightarrow 2\cos 2x\left( {1 – \cos 4x.\cos 2x} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\cos 2x = 0\\
1 – \left( {2{{\cos }^2}2x – 1} \right).\cos 2x = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{2} + k\pi \\
– 2{\cos ^3}2x + \cos 2x + 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
\cos 2x = 1
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
2x = k2\pi
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
x = k\pi
\end{array} \right.\\
2)\\
y = 4\sin x – 4{\cos ^2}x\\
= 4\sin x – 4\left( {1 – {{\sin }^2}x} \right)\\
= 4{\sin ^2}x + 4\sin x – 4\\
= {\left( {2\sin x + 1} \right)^2} – 5 \ge – 5\forall x\\
Vậy\,GTNN\,y = – 5
\end{array}$