giải pt ∛(5x+1)^2 + ∛(5x-1)^2 + ∛25x^2-1 =1 23/07/2021 Bởi Melody giải pt ∛(5x+1)^2 + ∛(5x-1)^2 + ∛25x^2-1 =1
Đáp án: \[x = 0\] Giải thích các bước giải: Ta có: \(\begin{array}{l}\sqrt[3]{{{{\left( {5x + 1} \right)}^2}}} + \sqrt[3]{{{{\left( {5x – 1} \right)}^2}}} + \sqrt[3]{{25{x^2} – 1}} = 1\\ \Leftrightarrow \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\left( {\sqrt[3]{{{{\left( {5x + 1} \right)}^2}}} + \sqrt[3]{{{{\left( {5x – 1} \right)}^2}}} + \sqrt[3]{{25{x^2} – 1}}} \right) = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\ \Leftrightarrow \left( {5x + 1} \right) – \left( {5x – 1} \right) = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\ \Leftrightarrow 2 = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\ \Leftrightarrow {\left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)^3} = 8\\ \Leftrightarrow \left( {5x + 1} \right) – \left( {5x – 1} \right) – 3.\sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}}.\left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right) = 8\\ \Leftrightarrow 2 – 3.\sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}}.2 = 8\\ \Leftrightarrow \sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}} = – 1\\ \Leftrightarrow \left( {5x – 1} \right)\left( {5x + 1} \right) = – 1\\ \Leftrightarrow 25{x^2} – 1 = – 1\\ \Leftrightarrow 25{x^2} = 0\\ \Leftrightarrow x = 0\end{array}\) Bình luận
Đáp án:
\[x = 0\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\sqrt[3]{{{{\left( {5x + 1} \right)}^2}}} + \sqrt[3]{{{{\left( {5x – 1} \right)}^2}}} + \sqrt[3]{{25{x^2} – 1}} = 1\\
\Leftrightarrow \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\left( {\sqrt[3]{{{{\left( {5x + 1} \right)}^2}}} + \sqrt[3]{{{{\left( {5x – 1} \right)}^2}}} + \sqrt[3]{{25{x^2} – 1}}} \right) = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\
\Leftrightarrow \left( {5x + 1} \right) – \left( {5x – 1} \right) = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\
\Leftrightarrow 2 = \left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)\\
\Leftrightarrow {\left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right)^3} = 8\\
\Leftrightarrow \left( {5x + 1} \right) – \left( {5x – 1} \right) – 3.\sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}}.\left( {\sqrt[3]{{5x + 1}} – \sqrt[3]{{5x – 1}}} \right) = 8\\
\Leftrightarrow 2 – 3.\sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}}.2 = 8\\
\Leftrightarrow \sqrt[3]{{\left( {5x – 1} \right)\left( {5x + 1} \right)}} = – 1\\
\Leftrightarrow \left( {5x – 1} \right)\left( {5x + 1} \right) = – 1\\
\Leftrightarrow 25{x^2} – 1 = – 1\\
\Leftrightarrow 25{x^2} = 0\\
\Leftrightarrow x = 0
\end{array}\)