giải pt 8(x+1/x)^2 +4(x^2+1/x)^2 -4(x^2+1/x^2)(x+1/x)^2 =(x+4)^2 cần gấp lắm ạ 15/11/2021 Bởi Maya giải pt 8(x+1/x)^2 +4(x^2+1/x)^2 -4(x^2+1/x^2)(x+1/x)^2 =(x+4)^2 cần gấp lắm ạ
$8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg(x^2+\dfrac{1}{x^2}\bigg)^2-4.\bigg(x^2+\dfrac{1}{x^2}\bigg).\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$ $ĐKXĐ : x \neq 0$ Ta có : $8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg(x^2+\dfrac{1}{x^2}\bigg)^2-4.\bigg(x^2+\dfrac{1}{x^2}\bigg).\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$ $⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg[\bigg(x^2+\dfrac{1}{x^2}+2\bigg)-2\bigg]^2 – 4.\bigg[\bigg(x^2+\dfrac{1}{x^2}+2\bigg)-2\bigg].\bigg(x+\dfrac{1}{x}\bigg)^2= (x+4)^2$ $⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg[\bigg(x+\dfrac{1}{x}\bigg)^2-2\bigg]^2 – 4.\bigg[\bigg(x+\dfrac{1}{x}\bigg)^2-2\bigg].\bigg(x+\dfrac{1}{x}\bigg)^2= (x+4)^2$ $⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2 + 4.\bigg(x+\dfrac{1}{x}\bigg)^4- 16.\bigg(x+\dfrac{1}{x}\bigg)^2+16 -4.\bigg(x+\dfrac{1}{x}\bigg)^4-8.\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$ $⇔ (x+4)^2=16$ $⇔ \left[ \begin{array}{l}x+4=4\\x+4=-4\end{array} \right.$ $⇔ \left[ \begin{array}{l}x=0 \text{( Loại)}\\x=-8 \text{( Thỏa mãn )}\end{array} \right.$ Vậy phương trình đã cho có tập nghiệm $S = \{-8\}$ Bình luận
$8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg(x^2+\dfrac{1}{x^2}\bigg)^2-4.\bigg(x^2+\dfrac{1}{x^2}\bigg).\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$
$ĐKXĐ : x \neq 0$
Ta có :
$8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg(x^2+\dfrac{1}{x^2}\bigg)^2-4.\bigg(x^2+\dfrac{1}{x^2}\bigg).\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$
$⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg[\bigg(x^2+\dfrac{1}{x^2}+2\bigg)-2\bigg]^2 – 4.\bigg[\bigg(x^2+\dfrac{1}{x^2}+2\bigg)-2\bigg].\bigg(x+\dfrac{1}{x}\bigg)^2= (x+4)^2$
$⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2+4.\bigg[\bigg(x+\dfrac{1}{x}\bigg)^2-2\bigg]^2 – 4.\bigg[\bigg(x+\dfrac{1}{x}\bigg)^2-2\bigg].\bigg(x+\dfrac{1}{x}\bigg)^2= (x+4)^2$
$⇔ 8.\bigg(x+\dfrac{1}{x}\bigg)^2 + 4.\bigg(x+\dfrac{1}{x}\bigg)^4- 16.\bigg(x+\dfrac{1}{x}\bigg)^2+16 -4.\bigg(x+\dfrac{1}{x}\bigg)^4-8.\bigg(x+\dfrac{1}{x}\bigg)^2 = (x+4)^2$
$⇔ (x+4)^2=16$
$⇔ \left[ \begin{array}{l}x+4=4\\x+4=-4\end{array} \right.$ $⇔ \left[ \begin{array}{l}x=0 \text{( Loại)}\\x=-8 \text{( Thỏa mãn )}\end{array} \right.$
Vậy phương trình đã cho có tập nghiệm $S = \{-8\}$