giải pt:
a) √(x ² – 1) + √(x – 1) = 0
b) √( x ² – 9) + √( x- 3) = 0
c) √(x ² – 3x + 2) + √(x – 1) =0
d) √(x ² – 5x + 4) + √(x – 4) = 0
giải pt:
a) √(x ² – 1) + √(x – 1) = 0
b) √( x ² – 9) + √( x- 3) = 0
c) √(x ² – 3x + 2) + √(x – 1) =0
d) √(x ² – 5x + 4) + √(x – 4) = 0
Đáp án:
a, Ta có
$\sqrt{x^2 – 1 } + \sqrt{x – 1 } = 0$ `(ĐKXĐ : x ≥ 1)`
` <=> x^2 – 1 + (x – 1) = 0`
` <=> (x – 1)(x + 1) + (x – 1) = 0`
` <=> (x – 1)(x + 2) = 0`
<=> \(\left[ \begin{array}{l}x – 1 = 0\\x + 2 = 0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=1\\x=-2 < Loại >\end{array} \right.\)
` <=> x = 1`
b, Ta có
$\sqrt{x^2 – 9}$ + $\sqrt{x – 3 }$ = 0 `(ĐKXĐ : x ≥ 3)`
` <=> x^2 – 9 + (x – 3) = 0`
` <=> (x – 3)(x + 3) + (x – 3) = 0`
` <=> (x – 3)(x + 4) = 0`
<=> \(\left[ \begin{array}{l}x – 3 = 0\\x + 4 = 0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=3\\x=-4 < Loại >\end{array} \right.\)
` <=> x = 3`
c, Ta có
$\sqrt{x^2 – 3x + 2}$ + $\sqrt{x – 1 }$ = 0 `(ĐKXĐ : x ≥ 1 )`
` <=> x^2 – 3x + 2 + x – 1 = 0`
` <=> x^2 – x – 2x + 2 + (x – 1) = 0`
` <=> x(x – 1) – 2(x – 1) + (x – 1) = 0`
` <=> (x – 1)(x – 1) = 0`
` <=> x – 1 = 0`
` <=> x = 1`
d, Ta có
$\sqrt{x^2 – 5x + 4}$ + $\sqrt{x – 4 }$ = 0 `(ĐKXĐ : x ≥ 4)`
` <=> x^2 – 5x + 4 + x – 4 = 0`
` <=> x^2 – x – 4x + 4 + (x – 4) = 0`
` <=> x(x – 1) – 4(x – 1) + (x – 4) = 0`
` <=> (x – 1)(x – 4) + (x – 4) = 0`
` <=> (x – 4)x = 0`
<=> \(\left[ \begin{array}{l}x – 4 = 0\\x=0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=4\\x=0\end{array} \right.\)
` <=> x = 4`
Giải thích các bước giải: