Giải pt bằng cách nhân liên hợp
a) $\sqrt[]{12x+13}$- $\sqrt[]{4x+13}$ =$\sqrt[]{x+1}$
b) $\sqrt[]{2x^{2}-1}$ +$\sqrt[]{x^{2}-3x-2}$ =$\sqrt[]{2x^{2}+2x+3}$+ $\sqrt[]{x^2-x+2}$
c) $\sqrt[]{2x+1}$+ $\sqrt[]{2x+3}$ =$\sqrt[]{x+3}$ +$\sqrt[]{x-1}$
d) $\sqrt[]{2x^{2}+16x+18}$ + $\sqrt[]{x^2-1}$ =2x+4
Đáp án:
Giải thích các bước giải:
a) ĐKXĐ $: x > – 1 (x = – 1$ ko TM)
$ \sqrt{12x + 13} – \sqrt{4x + 13} = \sqrt{x + 1}(1)$
$PT ⇔ (12x + 13) – (4x + 13) = \sqrt{x + 1}(\sqrt{12x + 13} + \sqrt{4x + 13})$
$ ⇔ \sqrt{12x + 13} + \sqrt{4x + 13} = \dfrac{8x}{\sqrt{x + 1}} (2) $
$(1) + (2) : 2\sqrt{12x + 13} = \sqrt{x + 1} + \dfrac{8x}{\sqrt{x + 1}}$
$ ⇔ 2\sqrt{x + 1}.\sqrt{12x + 13} = 9x + 1$
$ ⇔ 4(12x² + 25x + 13) = 81x² + 18x + 1$
$ ⇔ 33x² – 82x – 51 = 0 ⇔ (x – 3)(33x + 17) = 0$
$ ⇔ x – 3 = 0$ (Vì từ $(2) ⇒ x > 0)$
$ ⇔ x = 3$ là nghiệm duy nhất
b) ĐKXĐ $: x ≤ – \dfrac{\sqrt{2}}{2}; x ≥ \dfrac{3 + \sqrt{17}}{2}$
$PT ⇔ \sqrt{2x² – 1} – \sqrt{2x² + 2x + 3} + \sqrt{x² – 3x – 2} – \sqrt{x² – x + 2} = 0$
$ ⇔ \dfrac{(2x² – 1) – (2x² + 2x + 3)}{\sqrt{2x² – 1} + \sqrt{2x² + 2x + 3}} + \dfrac{(x² – 3x – 2) – (x² – x + 2)}{\sqrt{x² – 3x – 2} + \sqrt{x² – x + 2}} = 0$
$ ⇔ – \dfrac{2x + 4}{\sqrt{2x² – 1} + \sqrt{2x² + 2x + 3}} – \dfrac{2x + 4}{\sqrt{x² – 3x – 2} + \sqrt{x² – x + 2}} = 0$
$ ⇔ (x + 2)(\dfrac{1}{\sqrt{2x² – 1} + \sqrt{2x² + 2x + 3}} + \dfrac{1}{\sqrt{x² – 3x – 2} + \sqrt{x² – x + 2}}) = 0$
$ ⇔ x + 2 = 0 ⇔ x = – 2 (TM)$
c) ĐKXĐ $: x ≥ 1$
$ ⇒ 2x + 1 > x – 1 ⇔ \sqrt{2x + 1} > \sqrt{x – 1}$
$ 2x + 3 > x + 3 ⇔ \sqrt{2x + 3} > \sqrt{x + 3}$
$ ⇒ \sqrt{2x + 1} + \sqrt{2x + 3} > \sqrt{x + 3} + \sqrt{x – 1} ⇒ VN$
d) ĐKXĐ $ x ≤ – (4 + \sqrt{7}) ; x ≥ \sqrt{7} – 4$
$ PT ⇔ \sqrt{2x² + 16x + 18} – (2x + 4) + \sqrt{x² – 1} =0 (1)$
$ ⇔ \dfrac{(2x² + 16x + 18) – (2x + 4)²}{\sqrt{2x² + 16x + 18} + (2x + 4) } + \sqrt{x² – 1} =0$
$ ⇔ \dfrac{ – 2(x² – 1)}{\sqrt{2x² + 16x + 18} + (2x + 4)} + \sqrt{x² – 1} =0$
$ ⇔ \sqrt{x² – 1}(1 – \dfrac{2\sqrt{x² – 1}}{\sqrt{2x² + 16x + 18} + 2x + 4}) =0$
TH 1 $: \sqrt{x² – 1} = 0 ⇔ x = ± 1 (TM)$
TH 2 $: 1 – \dfrac{2\sqrt{x² – 1}}{\sqrt{2x² + 16x + 18} + 2x + 4} = 0$
$ \sqrt{2x² + 16x + 18} + (2x + 4) – 2\sqrt{x² – 1} =0 (2)$
$(1) + (2) : 2\sqrt{2x² + 16x + 18} – \sqrt{x² – 1} =0$
$ ⇔ 8x² + 64x + 72 = x² – 1 $
$ ⇔ 7x² – 64x + 73 = 0$
$ ⇔ x = \dfrac{32 ± 3\sqrt{57}}{7} > 0 (TM)$